72 research outputs found

    Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora B kinase is an important mitotic kinase involved in chromosome segregation and cytokinesis. It is overexpressed in many cancers and thus may be an important molecular target for chemotherapy. AZD1152 is the prodrug for AZD1152-HQPA, which is a selective inhibitor of Aurora B kinase activity. Preclinical antineoplastic activity of AZD1152 against acute myelogenous leukemia, multiple myeloma and colorectal cancer has been reported. However, this compound has not been evaluated in breast cancer, the second leading cause of cancer deaths among women.</p> <p>Results</p> <p>The antineoplastic activity of AZD1152-HQPA in six human breast cancer cell lines, three of which overexpress HER2, is demonstrated. AZD1152-HQPA specifically inhibited Aurora B kinase activity in breast cancer cells, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. AZD1152 administration efficiently suppressed the tumor growth in a breast cancer cell xenograft model. In addition, AZD1152 also inhibited pulmonary metastatic nodule formation in a metastatic breast cancer model. Notably, it was also found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity by AZD1152-HQPA in a time- and dose-dependent manner. Investigation of the underlying mechanism suggested that AZD1152-HQPA accelerated protein turnover of Aurora B via enhancing its ubiquitination.</p> <p>Conclusions</p> <p>It was shown that AZD1152 is an effective antineoplastic agent for breast cancer, and our results define a novel mechanism for posttranscriptional regulation of Aurora B after AZD1152 treatment and provide insight into dosing regimen design for this kinase inhibitor in metastatic breast cancer treatment.</p

    Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis

    Get PDF
    Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P &lt; 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis

    MTA3 Represses Cancer Stemness by Targeting the SOX2OT/SOX2 Axis

    Get PDF
    Cancer cell stemness (CCS) plays critical roles in both malignancy maintenance and metastasis, yet the underlying molecular mechanisms are far from complete. Although the importance of SOX2 in cancer development and CCS are well recognized, the role of MTA3 in these processes is unknown. In this study, we used esophageal squamous cell carcinoma (ESCC) as a model system to demonstrate that MTA3 can repress both CCS and metastasis in vitro and in vivo. Mechanistically, by forming a repressive complex with GATA3, MTA3 downregulates SOX2OT, subsequently suppresses the SOX2OT/SOX2 axis, and ultimately represses CCS and metastasis. More importantly, MTA

    MTA3 Represses Cancer Stemness by Targeting the SOX2OT/SOX2 Axis

    Get PDF
    Cancer cell stemness (CCS) plays critical roles in both malignancy maintenance and metastasis, yet the underlying molecular mechanisms are far from complete. Although the importance of SOX2 in cancer development and CCS are well recognized, the role of MTA3 in these processes is unknown. In this study, we used esophageal squamous cell carcinoma (ESCC) as a model system to demonstrate that MTA3 can repress both CCS and metastasis in vitro and in vivo. Mechanistically, by forming a repressive complex with GATA3, MTA3 downregulates SOX2OT, subsequently suppresses the SOX2OT/SOX2 axis, and ultimately represses CCS and metastasis. More importantly, MTA

    A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma:a multicenter prospective study

    Get PDF
    BACKGROUND: The tRNA-derived small RNAs (tsRNAs) are produced in a nuclease-dependent manner in responses to variety of stresses that are common in cancers. We focus on a cancer-enriched tsRNA signature to develop a salivary exosome-based non-invasive biomarker for human esophageal squamous cell carcinoma (ESCC). METHODS: Cancer-enriched small RNAs were identified by RNA sequencing of salivary exosomes obtained from ESCC patients (n = 3) and healthy controls (n = 3) in a pilot study and further validated in discovery cohort (n = 66). A multicenter prospective observational study was conducted in two ESCC high-incidence regions (n = 320 and 200, respectively) using the newly developed biomarker signature. RESULTS: The tsRNA (tRNA-GlyGCC-5) and a previously undocumented small RNA were specifically enriched in salivary exosomes of ESCC patients, ESCC tissues and ESCC cells. The bi-signature composed of these small RNAs was able to discriminate ESCC patients from the controls with high sensitivity (90.50%) and specificity (94.20%). Based on the bi-signature Risk Score for Prognosis (RSP), patients with high-RSP have both shorter overall survival (OS) (HR 4.95, 95%CI 2.90–8.46) and progression-free survival (PFS) (HR 3.69, 95%CI 2.24–6.10) than those with low-RSP. In addition, adjuvant therapy improved OS (HR 0.47, 95%CI 0.29–0.77) and PFS (HR 0.36, 95%CI 0.21–0.62) only for patients with high but not low RSP. These findings are consistent in both training and validation cohort. CONCLUSIONS: The tsRNA-based signature not only has the potential for diagnosis and prognosis but also may serve as a pre-operative biomarker to select patients who would benefit from adjuvant therapy. TRIAL REGISTRATION: A prospective study of diagnosis biomarkers of esophageal squamous cell carcinoma, ChiCTR2000031507. Registered 3 April 2016 - Retrospectively registered. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12943-022-01499-8

    A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma:a multicenter prospective study

    Get PDF
    BACKGROUND: The tRNA-derived small RNAs (tsRNAs) are produced in a nuclease-dependent manner in responses to variety of stresses that are common in cancers. We focus on a cancer-enriched tsRNA signature to develop a salivary exosome-based non-invasive biomarker for human esophageal squamous cell carcinoma (ESCC). METHODS: Cancer-enriched small RNAs were identified by RNA sequencing of salivary exosomes obtained from ESCC patients (n = 3) and healthy controls (n = 3) in a pilot study and further validated in discovery cohort (n = 66). A multicenter prospective observational study was conducted in two ESCC high-incidence regions (n = 320 and 200, respectively) using the newly developed biomarker signature. RESULTS: The tsRNA (tRNA-GlyGCC-5) and a previously undocumented small RNA were specifically enriched in salivary exosomes of ESCC patients, ESCC tissues and ESCC cells. The bi-signature composed of these small RNAs was able to discriminate ESCC patients from the controls with high sensitivity (90.50%) and specificity (94.20%). Based on the bi-signature Risk Score for Prognosis (RSP), patients with high-RSP have both shorter overall survival (OS) (HR 4.95, 95%CI 2.90–8.46) and progression-free survival (PFS) (HR 3.69, 95%CI 2.24–6.10) than those with low-RSP. In addition, adjuvant therapy improved OS (HR 0.47, 95%CI 0.29–0.77) and PFS (HR 0.36, 95%CI 0.21–0.62) only for patients with high but not low RSP. These findings are consistent in both training and validation cohort. CONCLUSIONS: The tsRNA-based signature not only has the potential for diagnosis and prognosis but also may serve as a pre-operative biomarker to select patients who would benefit from adjuvant therapy. TRIAL REGISTRATION: A prospective study of diagnosis biomarkers of esophageal squamous cell carcinoma, ChiCTR2000031507. Registered 3 April 2016 - Retrospectively registered. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12943-022-01499-8

    Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling

    Get PDF
    Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well

    Correction:Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling (Oncogene, (2021), 40, 11, (1974-1987), 10.1038/s41388-021-01682-z)

    Get PDF
    Only after the article was published online did the authors notice the misspelling of the second author’s name. It should be “Liang Du” instead of “Du Liang”. The authors sincerely apologize for any inconvenience this might have caused. The original article has been corrected

    Repurposing dextromethorphan and metformin for treating nicotine-induced cancer by directly targeting CHRNA7 to inhibit JAK2/STAT3/SOX2 signaling

    Get PDF
    Smoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well

    Salivary extracellular miRNAs for early detection and prognostication of esophageal cancer:a clinical study

    Get PDF
    BACKGROUND AND AIMS: Early detection of esophageal squamous cell carcinoma (ESCC) will facilitate curative treatment. We aimed to establish a micro-RNA (miRNA) signature derived from salivary extracellular vesicles and particles (EVPs) for early ESCC detection and prognostication.METHODS: Salivary EVP miRNA expression was profiled in a pilot cohort (n=54) using microarray. Area under the receiver-operator characteristic curve (AUROC) and lasso regression analyses were used to prioritize miRNAs that discriminated ESCC patients from controls. Using quantitative reverse transcription-polymerase chain reaction, the candidates were measured in a discovery cohort (n=72) and cell lines. The prediction models for the biomarkers were derived from a training cohort (n=342) and validated in an internal cohort (n=207) and an external cohort (n=226).RESULTS: The microarray analysis identified 7 miRNAs for distinguishing ESCC patients from control subjects. Since one was not always detectable in the discovery cohort and cell lines, the other 6 miRNAs formed a panel. A signature of this panel accurately identified all-stage ESCC patients in the training cohort (AUROC=0.968) and was successfully validated in two independent cohorts. Importantly, this signature could distinguish early-stage (stage Ⅰ/ Ⅱ) ESCC patients from control subjects in the training cohort (AUROC=0.969, sensitivity=92.00%, specificity=89.17%), internal (sensitivity=90.32%, specificity=91.04%) and external (sensitivity=91.07%, specificity=88.06%) validation cohorts. Moreover, a prognostic signature based on the panel was established and efficiently predicted the high-risk cases with poor progression-free survival and overall survival.CONCLUSION: The salivary EVP-based 6-miRNA signature can serve as noninvasive biomarkers for early detection and risk stratification of ESCC. Chinese Clinical Trial Registry, ChiCTR2000031507.</p
    corecore