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Article

MTA3 Represses Cancer Stemness
by Targeting the SOX2OT/SOX2 Axis
LiangDu,1,2,3,4,14 LuWang,1,2,14 JinfengGan,2,3,14 Zhimeng Yao,2,3Wan Lin,3 Junkuo Li,5,6 Yi Guo,7 Yuping Chen,8

Fuyou Zhou,5,6,* Sai-Ching Jim Yeung,9,10 Robert P. Coppes,4 Dianzheng Zhang,11,12 and Hao Zhang1,2,13,15,*

SUMMARY

Cancer cell stemness (CCS) plays critical roles in both malignancy maintenance andmetastasis, yet the

underlying molecular mechanisms are far from complete. Although the importance of SOX2 in cancer

development and CCS are well recognized, the role of MTA3 in these processes is unknown. In this

study, we used esophageal squamous cell carcinoma (ESCC) as a model system to demonstrate that

MTA3 can repress both CCS and metastasis in vitro and in vivo. Mechanistically, by forming a repres-

sive complex with GATA3, MTA3 downregulates SOX2OT, subsequently suppresses the SOX2OT/

SOX2 axis, and ultimately represses CCS and metastasis. More importantly, MTA3low/SOX2high is

associated with poor prognosis and could serve as an independent prognostic factor. These findings

altogether indicate that MTA3/SOX2OT/SOX2 axis plays an indispensable role in CCS. Therefore, this

axis could be potentially used in cancer stratification and serves as a therapeutic target.

INTRODUCTION

Cancer stem cells (CSCs) are a subpopulation of tumor cells capable of self-renewal and extensive prolif-

eration. These properties make CSCs one of the driving forces in each of the cancer processes including

progression, recurrence, and metastasis (Visvader and Lindeman, 2012). Accumulating evidence also sug-

gests that CSCs play paramount roles in the development of therapeutic resistance (Nassar and Blanpain,

2016; Visvader and Lindeman, 2012). Given the fact that the overwhelming majority of cancer recurrences

are due to the repopulation of cancer cells from CSCs, targeting CSCs would be an efficacious strategy in

the development of treatments for therapeutic resistant cancers (Nassar and Blanpain, 2016). Thus, better

understanding the underlying molecular mechanisms in both cancer development and maintenance of

cancer stemness will provide strategies in designing new cancer treatments. An increasing body of evi-

dence suggests that epigenetic changes play critical roles in the development of cancer stemness (Desh-

mukh et al., 2017). Epigenetic mechanisms such as histone modifications, DNA methylation, chromatin re-

modeling, and even changes in noncoding RNAs including long non-coding RNAs (lncRNAs) govern the

epigenetic landscape that dictates the outcomes of cell fates without changing the DNA sequence (Leone

and Santoro, 2016). Akin to embryonic stem cells, CSCs undergo similar epigenetic processes such as DNA

methylation and chromatin remodeling (Deshmukh et al., 2017).

lncRNAs are a subgroup of RNA molecules that are more than 200 nucleotides in length without encod-

ing any protein (Schmitt and Chang, 2016). It has been estimated that lncRNAs represent approximately

80% of the eukaryotic transcriptome, and the roles of lncRNAs have just started to be recognized

(Schmitt and Chang, 2016). LncRNAs can have either tumor-suppressing or tumor-promoting activities,

and genome-wide association studies of different tumor samples found that mutations and/or altered

expressions of lncRNA could be responsible for both tumorigenesis and metastasis (Schmitt and Chang,

2016). Therefore, it has been suggested that the levels of some lncRNAs could be used as potential bio-

markers and targeting lncRNAs could be developed into efficient cancer treatments (Bhan et al., 2017).

SOX2OT (SOX2 overlapping transcript) is a lncRNA and directly involved in the regulation of SOX2, one

of the master regulators crucial for both embryonic stem cells and cancer stemness (Li et al., 2018; Zhang

et al., 2017). It has been noticed that not only is SOX2OT co-upregulated with SOX2 in multiple cancers

including esophageal squamous cell carcinoma (Shahryari et al., 2014), lung squamous cell carcinoma

(Hou et al., 2014), and breast cancer (Askarian-Amiri et al., 2014), but also upregulated SOX2OT and

SOX2 also highly associate with poor outcome (Hou et al., 2014; Zhang et al., 2017). Of note, both

SOX2OT and SOX2 are amplified in esophageal squamous cell carcinoma (ESCC) (Bass et al., 2009;

Wang et al., 2017), although little is known about the regulation of the SOX2OT/SOX2 axis in this partic-

ular cancer.
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By being involved in chromatin remodeling (Kumar and Wang, 2016), metastasis-associated proteins

(MTAs) composed of MTA1, MTA2, and MTA3 (Toh and Nicolson, 2009) serve as master regulators in

both physiological and pathological contexts (Ning et al., 2014). All family members of the MTA are asso-

ciated with the NuRD complex to suppress a subset of target genes (Bowen et al., 2004; Manavathi et al.,

2007; Yao and Yang, 2003). Although both MTA1 and MTA2 are generally considered as oncogenes mainly

because they are capable of enhancingmetastasis, MTA3 can serve as either a cancer repressor or an onco-

gene depending on cancer types (Ning et al., 2014). MTA3 was initially discovered as an estrogen-depen-

dent gene that forms a distinct complex with Mi-2/NuRD and possesses strong transcription repressing ac-

tivity on Snai1, leading to the upregulation of E-cadherin, and subsequently inhibits invasive growth of

breast cancer cells (Zhang et al., 2006b). In addition, downregulation of MTA3 is associated with poor prog-

nosis in a variety of cancers, including gastroesophageal junction adenocarcinoma (Dong et al., 2013), en-

dometrioid adenocarcinomas (Bruning et al., 2010), and brain glioma (Shan et al., 2015). On the other hand,

upregulation of MTA3 in uterine non-endometrioid (Mylonas and Bruning, 2012) and non-small cell lung

cancer (Li et al., 2013) is significantly correlated with poor prognosis. Of note, it has been suggested

that MTA3-mediated epigenetic remodeling of chromatins may be involved in the regulation of cancer

stemness (Liau et al., 2017).

In this study, we explored the roles and the underlying molecular mechanisms of MTA3 in ESCC based on

the following reasons: (1) ESCC is one of the major cancers in the digestive tract (Dong et al., 2017b; Feng

et al., 2014) with 26%–53% of patients showing lymph node metastasis (Kumagai et al., 2018); (2) it appears

that MTA3 utilizes a totally different EMT-regulating mechanisms in ESCC. We found that, in ESCC cells,

MTA3 inhibits cancer stemness and metastasis by targeting the SOX2OT/SOX2 axis.

RESULTS

Downregulation of MTA3 Correlates with Tumor Progression and Poor Prognosis in Human

ESCC

To systematically explore the roles of MTA3 in cancer initiation and progression, we first examined the pro-

tein levels of MTA3 in different organs based on the dataset obtained from the Human Protein Atlas data-

base (www.proteinatlas.org) and found that MTA3 is almost ubiquitously expressed. However, its expres-

sion is particularly high in the gastrointestinal (GI) digestive tract including esophagus (Figures S1A and

S1B), suggesting that MTA3 may play more important roles in these tissues. Results from analyzing the da-

taset GSE26886 showed that compared with that in normal esophageal epithelium tissues (n = 19) the

mRNA levels of MTA3 are significantly lower in multiple GI tract diseases including ESCC tissues (n = 9),

esophagus adenocarcinoma (n = 21), and Barrett esophagus (n = 20) (p < 0.001 for all; Figure S1C). In addi-

tion, a different dataset (GSE23400) also showed lower MTA3 mRNA levels in high percentage tumors (35/

51) compared with their paired normal adjacent tissues (p < 0.01; Figure 1A). We then conducted qRT-PCR

to estimate the mRNA levels ofMTA3 in ESCC patient samples and found that compared with their paired

normal adjacent tissues 10 of 15 ESCC tissues expressed lower levels of MTA3 mRNA (Figure 1B). We also

conducted western blot assays to compare the protein levels of MTA3 in ESCC cell lines with two immor-

talized normal esophageal epithelial cell lines, NE2 and NE3. Figure 1C shows that all cancer cell lines

examined express lower levels of MTA3. This finding is also consistent with the notion that ESCC cell lines

express lower levels of MTA3 than that of normal esophageal epithelium cells (dataset GSE23964) (Fig-

ure S1D). These data altogether suggest that MTA3 may play some anti-cancer roles in ESCC.

To determine the clinical relevance of MTA3 in ESCC, we conducted immune-histochemical analyses to

compare the protein levels of MTA3 in 125 ESCC tissues with their paired normal adjacent tissues and

found that MTA3 is significantly lower in ESCC tissues (p < 0.001; Figure 1D). In addition, according to

the receiver operating characteristic (ROC) curve (Figure 1E) with an optimal cutoff point of 4.25 (H-score)

we found that 62.4% (78 of 125) of ESCC tissues versus only 12.5% (16 of 125) adjacent normal tissues had

lower levels of MTA3. Furthermore, correlation analyses revealed that the protein levels of MTA3 are

inversely correlated with both tumor depth (p = 0.011; Table S1) and advanced clinical stages (p = 0.033;

Table S1). More importantly, Kaplan-Meier analyses showed that patients with ESCC with a lower level

of MTA3 are associated with poorer prognosis (p = 0.001; Figure 1F) and multivariate Cox regression an-

alyses showed that MTA3 can serve as an independent prognostic factor for overall survival of patients

with ESCC (hazard ratio [HR], 2.717; 95% confidence interval [CI], 1.333–5.537, p = 0.006; Table S2).

Finally, gene set enrichment analysis (GSEA) found that, compared with the paired normal adjacent

tissues, the signature that negatively correlated with MTA3 is enriched in ESCC tissues (dataset
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Figure 1. Downregulation of MTA3 Correlates with Poor Prognosis in Human ESCC

(A) The mRNA levels of MTA3 in the ESCC dataset GSE23400.

(B) The mRNA levels of MTA3 in 15 human ESCC specimens and their paired normal adjacent tissues.

(C) Western blot analysis of MTA3 in a panel of ESCC cell lines and two immortalized esophageal epithelial cell lines. b-Actin is used as a loading control.

(D) Immunohistochemistry (IHC) of MTA3 in 125 human ESCC tissues and their paired adjacent normal tissues (left panel). The immunohistochemistry score

of MTA3 in ESCC (filled bar) and the paired normal adjacent (open bar) tissues (right panel). Scale bars: upper panels, 400 mm; lower panels, 100 mm.

(E) Receiver operating characteristic (ROC) curve analysis to determine the cutoff score for low expression of MTA3.

(F) Kaplan-Meier curves compared the overall survival in patients with ESCC with high and low protein levels of MTA3.

(G) GSEA plots of enrichment of BIOCARTA_MTA3_PATHWAY in normal adjacent tissues versus ESCC specimens in the GSE23400 dataset. FDR q, false-

discovery rate q value; NES, normalized enrichment score.

Data were shown as the means from at least three independent experiments or representative data. Error bars indicate SEM. **p < 0.01, ***p < 0.001 by

Student’s t test. See also Figure S1, Table S1, and Table S2.
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GSE23400) (p = 0.023, false discovery rate [FDR] = 0.043; Figure 1G). Taken together, these data suggest

that MTA3 might possess a repressive role in ESCC progression.

MTA3 Suppresses ESCC Cell Metastasis and Stemness

To gain insights into the potential repressive role of MTA3 in ESCC progression, we conducted GSEA on

the dataset GSE23400 to explore the downstream signaling of MTA3 and found that MTA3 expression is

inversely related to the metastatic signatures (p = 0.024, FDR = 0.035; Figure S2A). We chose four cell lines

to examine the effect of MTA3 on the metastasis makers and found that knockdown MTA3 in ESCC cells

leads to significant reduction and induction of the epithelial marker (E-cadherin) andmesenchymal markers

(N-cadherin and vimentin), respectively (Figure S2B). On the other hand, overexpression of MTA3 showed

the exact opposite effects on these markers (Figure S2B). These results support the notion that MTA3 may

be involved in the regulation of ESCC cell metastasis. In addition, MTA3 knockdown not only makes the

actin filaments in cells more elongated stress fibers but more cells also lost their cell-cell contacts (Fig-

ure S2C). The fluorescent phalloidin staining results also showed that overexpression of MTA3 altered

the shape of cells from spindle-like, fibroblastic morphology to a cobblestone-like appearance (Fig-

ure S2C). The more flexible cytoskeleton of neoplastic is expected to favor cell migration through the

trans-well, and indeed the trans-well assays showed that more MTA3-depleted cells migrated through

the membrane (p < 0.05 for all; Figure S2D). In contrast, MTA3 overexpression suppressed both ESCC

cell invasion and migration (p < 0.001 for both; Figure S2D). These data collectively demonstrated that

MTA3 possesses a repressive role in ESCC cell metastasis.

Before conducting experiments to determine theMTA3’s effect on ESCCmetastasis in vivo, GSEA analyses

on two separate datasets were conducted to determine the effect of MTA3 on tumor cell proliferation and

lymph node invasion. We found that (1) MTA3 expression was inversely related to cell proliferation (dataset

GSE23400) (p = 0.027, FDR = 0.032; Figure S3A) and (2) ESCC tissues with lowMTA3 activity are more intend

to have lymph nodemetastasis (dataset GSE47404) (p = 0.032, FDR = 0.041; Figure S3B). Then we estimated

the effect of MTA3 on ESCC cells using the in vivo animal model. Figures S3C and S3D showed that tumors

derived from EC9706 and EC109 cells were not only larger but also heavier when MTA3 is knocked down by

shRNA (p < 0.01 for all). On the other hand, the tumors derived from EC9706 and HKESC-1 cells were

smaller and lighter when MTA3 is overexpressed (p < 0.01 for both; Figures S3E and S3F). These results

indicate that MTA3 can repress ESCC cell proliferation in vivo. In addition and consistent with the

in vitro data, epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin and Vimentin) in tumors

derived from ESCC cells were significantly decreased and increased, respectively, when MTA3 was

knocked down (Figure S3G). This suggests that MTA3 can repress ESCC cell metastasis in vivo. To further

substantiate this finding, the EC9706 and TE1 cells with or without shMTA3 transfection were labeled with

luciferase and injected into the flanks of nude mice (Figures 2A, S3H, and S3I). The expression of luciferase

enabled us to monitor the tumor cell dissemination and inguinal lymph node metastasis. We found that

depletion of MTA3 promoted inguinal lymph node metastasis (Figures 2B, 2C, and S3J), which is further

substantiated by hematoxylin and eosin (H&E) staining (Figure 2F). Finally, when these cells were injected

into the tail vein of nude mice, more ESCC cells in the MTA3 knockdown group were found in the lungs

(Figure 2D and 2E), which is substantiated with results of H&E staining (Figure 2G). These findings alto-

gether lead us to conclude that MTA3 plays an important repressive role in ESCC cell proliferation and

metastasis in vivo.

Since merging evidence points toward a central role of MTA3 in epithelial to mesenchymal transition (EMT)

by targeting Snai1 (Fujita et al., 2003), we decided to determine whether MTA3 is involved in the regulation

of Snai1 in ESCC cells. To do so, we conducted qRT-PCR to estimate themRNA levels of Snai1 and the other

EMT-related transcriptional factors including Twist 1, Twist2, and ZEB1 in three ESCC cell lines (EC9706,

EC109, and TE1) with or without MTA3 knockdown. As shown in Figures S4A–S4D, knockdown MTA3 in

these cells has no effect on any of these factors in both RNA and protein levels. Then a luciferase reporter

plasmid under the control of promoter of the Snai1 gene was transfected to these three cell lines with or

without MTA3 knockdown. Consistent with the qRT-PCR results, knockdown MTA3 has no effect on lucif-

erase activity under the control of the Snai1 promoter (Figures S4E–S4G). Therefore, we assumed that the

effect of MTA3 on ESCC metastasis is through regulatory mechanisms other than these EMT regulators.

CSCs are a small subpopulation of cells in the cancer tissue and play important roles in every aspect of can-

cer development, including initiation, progression, and metastasis. To explore whether MTA3 plays any

role in CSCs, we conducted a GSEA on dataset GSE23400 and found that MTA3 is inversely associated
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with stemness signatures (p = 0.049, FDR = 0.067; Figure 2H). We then estimated MTA3’s effect on mam-

mosphere formation and found that knockdown and overexpression of MTA3 significantly (p < 0.01)

increased and decreased the number of mammospheres, respectively (Figures 2I and S5A), suggesting

that MTA3 possesses property against ESCC cancer stemness. To substantiate these findings, we esti-

mated MTA3’s effects on the CD44+ and side population (SP) cells (Chen et al., 2013) and found that deple-

tion of MTA3 significantly (p < 0.001) increased the proportion of both CD44+ (Figures 2J and S5B) and SP+

(Figures 2K and S5C) cells, whereas overexpression of MTA3 decreased the proportion of both CD44+ (Fig-

ures 2J and S5B) and SP+ cells (Figure 2L). Finally, CD44 increased dramatically in ESCC cells when MTA3 is

knocked down (Figures 2M and S5D). Of note, the role of MTA3 in ESCC cancer stemness was supported by

the findings in other tumors, including head and neck squamous cell carcinoma (HNSCC), oral squamous

cell carcinoma (OSCC), breast invasive carcinoma (BRCA), and pancreatic adenocarcinoma (PAAD) data-

sets (Figures S5E–S5H).

MTA3 Downregulates SOX2 and SOX2OT Simultaneously

To understand the mechanism in MTA3-regulated ESCC cancer stemness, we conducted a stemness PCR

array and found that MTA3 knockdown leads to certain stemness-related genes to be up- or down-regu-

lated, and 11 of them were elevated more than 1.5-fold (Figure S6A). Results from analyzing these 11 genes

in the Cancer Genome Atlas (TCGA) database suggested that CHEK1, SOX2, and TAZ were significantly

upregulated in ESCC tissues (Figure S6B). We then conducted qRT-PCR on these three genes and found

that only SOX2, not the other two, is significantly up- and down-regulated by MTA3 depletion and overex-

pression, respectively (Figures S6C and S6D). In addition, western blot assays also confirmed that MTA3

downregulates SOX2 in ESCC cells (Figure S6E). Given the pivotal roles of SOX2 in both embryonic and

cancer stemness (Bass et al., 2009; Li et al., 2018), we examined MTA3’s effect on SOX2 expression. How-

ever, luciferase reporter assays showed that MTA3 has no regulatory effect on SOX2 promoter (Figures S6F

and S6G), suggesting that MTA3 could regulate SOX2 indirectly.

SOX2 overlapping transcript (SOX2OT) is a lncRNA located in the intron of the SOX2 gene (Li et al., 2018)

and transcribed in the same orientation of SOX2. It has been reported that SOX2OT is co-upregulated with

SOX2 in ESCC cells (Shahryari et al., 2014), and upregulation of SOX2OT and SOX2 is involved in the regu-

lation of cancer stemness (Li et al., 2018). Mechanistically, SOX2OT upregulates SOX2 by serving as a

competing endogenous RNA (ceRNA) to sequester specific microRNA (miRNA) and subsequently coun-

teract miRNA-mediated SOX2 downregulation (Li et al., 2018). We decided to determine if MTA3 represses

SOX2 expression via targeting SOX2OT. We found that MTA3 knockdown and overexpression significantly

(p < 0.01) up- and down-regulated both SOX2OT and SOX2, respectively (p < 0.01, Figures 3A–3D). Finally,

we conducted luciferase reporter assays to determine MTA3’s regulatory role in SOX2OT transcription.

Figure 3E demonstrated that MTA3 is capable of repressing SOX2OT promoter activity because of deple-

tion and overexpression of MTA3 significantly up- and down-regulated the reporter activity, respectively

(p < 0.001 for both). Together, these data suggest that, in ESCC cells, MTA3 indirectly downregulates

SOX2 by targeting SOX2OT.

Figure 2. MTA3 Suppresses Metastasis and Stemness of ESCC Cells

(A) EC9706 cells transfected with shMTA3 or shCtrl were infected with lentiviruses carrying luciferase and then subjected to RNA extraction followed by qRT-

PCR analysis of luciferase gene.

(B–G) The EC9706 cells with or without MTA3 depletion were infected with recombinant lentiviruses carrying luciferase and injected subcutaneously into the

flanks of nude mice (n = 8). The inguinal lymph nodes of the animals were extracted and analyzed for the presence of metastatic cells by bioluminescence

imaging (B), and proportion of inguinal lymph nodes metastasis in the nude mice (C). EC9706 cells transfected with shMTA3 or shCtrl were injected

intravenously through the tail vein of nude mice (n = 6). Representative images of lung metastasis were shown (D, left panel), numbers of metastatic nodules

per lung in the nude mice (D, right panel), and proportion of lung metastasis in the nude mice (E). (F) The inguinal lymph nodes were analyzed by H&E. Scale

bars: left panels, 400 mm; right panels, 100 mm. (G) Lung architecture is shown by H&E. Scale bars: left panels, 400 mm; right panels, 100 mm.

(H) GSEA plots of enrichment of BOQOEST_STEM_CELL_UP signatures in MTA3High tumors versus MTA3Low tumors in the GSE23400 dataset.

(I) Representative images of spheres formed by EC9706 cells withMTA3 depleted (upper panel) or overexpressed (lower panel). Histograms showing the fold

change in the number of spheres formed by EC9706 cells with MTA3 depleted (upper right panel) or overexpressed (lower right panel). Scale bars: 200 mm.

(J–L) (J) Flow cytometry analysis of the CD44+ population in EC9706 cells with MTA3 depleted (upper panel) or overexpressed (lower panel). Histograms

showing the proportion of CD44+ cells in EC9706 cells with MTA3 depleted (upper right panel) or overexpressed (lower right panel). (K and L) Hoechst 33342

dye exclusion assay of the SP+ population in EC9706 cells with MTA3 depleted (K) or overexpressed (L). Histograms showing the proportion of SP+ cells in

EC9706 cells with MTA3 depleted (K, right panel) or overexpressed (L, right panel).

(M) Representative images of immunofluorescence for CD44 proportion in EC9706 cells with MTA3 depleted. Scale bars: 40 mm.

Data are shown as the means of three independent experiments or representative data. Error bars indicate SEM. **p < 0.01, ***p < 0.001 by Student’s t test

or chi-square test, where appropriate. See also Figures S2–S5.
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Figure 3. MTA3 Inhibits SOX2OT Transcription Depending on GATA3

(A) QRT-PCR of SOX2OT in EC9706 cells with MTA3 depletion or MTA3 overexpression and in HKESC-1 cells with MTA3 overexpression.

(B–D) Western blot of SOX2 and qRT-PCR of SOX2OT in tumors derived from EC9706 (B) and EC109 (C) cells with MTA3 depletion, or EC9706 cells and

HKESC-1 cells with MTA3 overexpression (D).
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MTA3 Is Recruited by GATA3 to Repress SOX2OT Transcription

Although MTA3 harbors a putative DNA-binding domain, there is no evidence indicating that MTA3 can

interact with DNA directly (Kumar and Wang, 2016). Since it has been reported that MTA3 can serve as a

transcriptional repressor by complexing with GATA3 (Si et al., 2015), we conducted bioinformatics analyses

using PROMO (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) and JAS-

PAR (http://jaspar.genereg.net/) and found three potential GATA3-binding sites in the promoter region

of SOX2OT gene (Figure 3F). We then conducted a simple duo-link assay and found that MTA3 is very likely

to complex with GATA3 in ESCC cells (Figure 3G). To determine whetherMTA3 is recruited to the promoter

of SOX2OT, we performed chromatin immunoprecipitation (ChIP) assays using an antibody against MTA3

and the precipitated DNA was amplified with different pairs of primers (Figure 3F). Results from both semi-

quantitative PCR (Figure 3H) and qPCR (Figures 3I and S7A) demonstrated that MTA3 is recruited to the

promoter region of the SOX2OT gene by GATA3 because knockdown of GATA3 abolished MTA3’s repres-

sive effect on SOX2OT and inhibited the MTA3’s occupation on the promoter region of SOX2OT (Figures

3J–3L, S7B, and S7C). To determine which GATA3-binding site(s) is responsible for MTA3 recruitment, we

conducted luciferase reporter assays with one, two, or three potential GATA3 being deleted (Figure 3M)

from the SOX2OT promoter. Figure 3N shows that MTA3 failed to repress SOX2OT promoter activity

when these potential GATA3 sites were deleted. In addition, potential GATA3-binding site #1 is likely to

be not involved in MTA3 recruitment because deletion of this site has no effect on MTA3-mediated repres-

sion. However, sites #2 and #3 are likely to be responsible for the recruitment of GATA3/MTA3 complex

because deleting either of them reduced MTA3-mediated repression significantly (p < 0.001, Figure 3O).

These results collectively demonstrated that, in ESCC cells, MTA3 is recruited by GATA3 to inhibit SOX2OT

expression.

MTA3 Represses Metastasis and Cancer Stemness by Targeting the SOX2OT/SOX2 Axis

To determine if MTA3-repressed cancer stemness is mediated by the SOX2OT/SOX2 axis, we first exam-

ined the role of SOX2OT in MTA3-regulated EMT, invasion, and stemness by analyzing the changes of spe-

cific markers in the presence or absence of SOX2OT. Figure 4A showed that SOX2OT was successfully

knocked down by locked nucleic acid (LNA)-modified antisense oligonucleotides (GapmeRs), which is

referred as SOX2OT AS. As expected, knockdown of SOX2OT leads to a reduced level of SOX2. Figure 4A

also showed that knockdown of MTA3 not only leads to higher levels of both SOX2 and SOX2OT but also

altered the EMT and stemness markers accordingly. Of note, MTA3-depletion-mediated SOX2 upregula-

tion is significantly reduced when SOX2OT is depleted, suggesting that SOX2OT plays a crucial role in

MTA3-mediated SOX2 repression. We have also examined the effect of overexpression of either SOX2OT

or MTA3 individually or in combination on SOX2 and specific markers. Figure 4B showed that overex-

pressed SOX2OT and MTA3 were able to up- and down-regulate SOX2, respectively. However, overex-

pressed SOX2OT is capable of counteracting MTA3-repressed SOX2 expression as well as the alteration

of EMT and stemness markers. In addition, Figures 4C and 4D show that SOX2OT promotes both cell in-

vasion and cancer stemness and MTA3 represses these processes by inhibiting SOX2OT. These observa-

tions are consistent with the effect of SOX2OT and MTA3 on the subpopulations of CD44+ and SP+ cells

(Figure S8). More importantly, overexpressed MTA3 inhibited SOX2OT-induced inguinal lymph node

Figure 3. Continued

(E) SOX2OT Gaussia luciferase reporter activity in EC9706 cells with MTA3 depletion or overexpression.

(F) Schematic structure of the SOX2OT promoter and positions of ChIP primers.

(G) Proximity Ligation Assay (PLA) detection of MTA3-GATA3 interaction. EC9706 cells transfected with the indicated shRNAs were subjected to PLA using

antibodies against MTA3 or GATA3. Scale bars: 10 mm.

(H and I) ChIP assay using antibodies against MTA3 or IgG. Semi-quantitative PCR (H) and qPCR (I) to detect the enriched DNA fragments in the SOX2OT

promoter region.

(J) Western blot of GATA3 in MTA3 overexpressed EC9706 cells transfected with shGATA3-expressing plasmid. b-Actin is shown as a loading control.

(K) SOX2OT luciferase reporter activity in EC9706 cells transfected with the MTA3 or shGATA3 plasmids.

(L) ChIP assay was performed in EC9706 cells with GATA3 depletion using antibodies against MTA3 or IgG, and qPCR was used to detect the enriched DNA

fragments in the SOX2OT promoter region.

(M) Schematic structure of deletion-mutation reporters of the SOX2OT promoter.

(N and O) The SOX2OT promoter-reporter and mutations DGATA3 (N) or in GATA3-binding site 1 (DGATA3 #1), GATA3-binding site 2 (DGATA3 #2),

GATA3-binding site 3 (DGATA3 #3) (O). The relative SOX2OT Gaussia luciferase reporter activities 72 h after transfection.

Data are shown as the means of three independent experiments or representative data. Error bars indicate SEM, n.s., not statistically significant; *p < 0.05,

**p < 0.01, ***p < 0.001 by Student’s t test or a one-way ANOVA with post hoc intergroup comparisons, where appropriate. See also Figures S6 and S7, and

Table S3.
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metastasis (Figures 4E and 4F). These data altogether demonstrated that, in ESCC cells, MTA3 represses

cancer metastasis and stemness by targeting the SOX2OT/SOX2 axis.

MTA3-Repressed SOX2OT/SOX2 Axis Is Significant in the Outcomes of Patients with ESCC

Cancer

We conducted qRT-PCR to measure the mRNA levels of MTA3, SOX2OT, and SOX2 in 32 patients with

ESCC, and a Pearson’s correlation analysis showed a significant negative correlation between MTA3 and

SOX2OT (r = �0.408, p = 0.021; Figure 5A) or SOX2 (r = �0.393, p = 0.026; Figure 5B). In addition, the level

of SOX2OT is positively correlated with the mRNA level of SOX2 (r = 0.874, p < 0.001; Figure 5C). We have

also conducted immunohistochemistry (IHC) to estimate SOX2 in a separate cohort of 125 patients with

ESCC. Based on the ROC curve analysis, the samples with IHC score R4.5 were categorized into the

high-SOX2 group and those with IHC scores <4.5 were in the low-SOX2 group (Figure 5D). Kaplan-Meier

analyses found that patients with ESCC in the high-SOX2 group had a poorer prognosis than those in the

low-SOX2 group (p < 0.001; Figure 5E). Correlation analyses also found that tumors with low levels of MTA3

were more likely to have high levels of SOX2 (p < 0.01; Figure 5F). These patients with ESCC were stratified

into different groups based on the levels of MTA3 and SOX2. Kaplan-Meier analyses found that overall sur-

vival of patients in the low-MTA3/high-SOX2 group is significantly worse than those in the high-MTA3/low-

SOX2 (p < 0.001; Figure 5G), high-MTA3/low-SOX2, high-MTA3/high-SOX2, and low-MTA3/low-SOX2 (p <

0.001; Figure 5H) groups. Finally, multivariate Cox regression analyses found that low-MTA3/high-SOX2

(HR, 3.273; 95% CI, 1.815 to 5.901, p = 0.000) can be used as independent prognostic indicators in ESCC

patient prognosis (Table 1). These results indicate that the MTA3-targeted SOX2OT/SOX2 axis plays an

important role in not only cancer stemness but also ESCC cancer patient outcomes.

Targeting the MTA3-SOX2OT/SOX2 Axis Represses Cancer Stemness

We decided to examine the roles of MTA3, SOX2OT, and SOX2 individually or in combination in cancer

stemness in animal models and explore the potential of targeting MTA3-mediated SOX2OT/SOX2 axis

as therapeutic strategies. To do so, we first used EC9706 cells to establish overexpression of MTA3 or

SOX2 individually or in combinations (Figure 6A) as well as knockdown of MTA3 or SOX2 by specific shRNA

individually or in combination (Figure 6B). These cells were subcutaneously injected into nude mice, and

the tumor volumes were monitored weekly for 4–5 weeks. The animals were sacrificed at the end of the

experiment, and the tumors were dissected and weighed. Figures 6C and 6D show that the tumors derived

from the cells with MTA3 overexpression were significantly smaller/lighter and the tumors derived from the

cells overexpressing either SOX2OT or SOX2 were significantly bigger/heavier. In addition, the size/weight

of tumors derived from the cells overexpressing MTA3 with either SOX2OT or SOX2 was bigger/heavier

than that with MTA3 overexpression alone but smaller/lighter than that with either SOX2OT or SOX2 over-

expression. On the other hand, the tumors derived from the cells with MTA3 and SOX2 knockdown were

bigger/heavier and smaller/lighter, respectively. The size/weight of the tumors derived from the cells

with knockdown of both MTA3 and SOX2 was similar to that of the control (Figure 6E). Furthermore, results

from IHC revealed that the effect of MTA3 on stemness markers was attenuated by overexpression of either

SOX2OT or SOX2 (Figures 6F and 6G). Moreover, shRNA-mediated SOX2 depression markedly abolished

the MTA3 depletion-induced alterations of stemness markers (Figure 6H). More importantly, flow cytome-

try analyses showed that the decrease of CD44+ and SP+ cells by MTA3 overexpression was overcome by

overexpression of SOX2OT or SOX2 (Figures 6I and 6J), whereas the MTA3 silencing-induced CD44+ and

SP+ subpopulation was hampered by SOX2 depletion (Figure 6K). These findings collectively support the

Figure 4. MTA3 Regulates ESCC Cell Metastatic Potential and Stemness via SOX2OT

(A and B) Western blot and qRT-PCR in EC9706 cells transfected with a combination of shMTA3 and SOX2OT AS oligo (A) or MTA3- and SOX2OT-expressing

plasmid (B).

(C and D) The above-mentioned cells were subjected to the cell invasion assay (C) and sphere assay (D). Representative fields of the invaded cells, and sphere

(left panels). Histograms with the fold change in the number of invaded cells and spheres formed by the indicated cells (right panels). Scale bars: 200 mm in (C)

and (D).

(E) The indicated cells were infected with lentiviruses carrying luciferase and then subjected to RNA extraction followed by qRT-PCR analysis of luciferase

gene. The inguinal lymph nodes were extracted and analyzed for the presence of metastatic cells by bioluminescence imaging.

(F) EC9706 cells transfected with a combination of MTA3- and SOX2OT-expressing plasmid were infected with recombinant lentiviruses carrying luciferase

and injected subcutaneously into the flanks of nude mice (n = 10). The inguinal lymph nodes of the animal were extracted and analyzed for the presence of

metastatic cells by bioluminescence imaging.

Data were shown as the means of three independent experiments or representative data. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-

way ANOVA with post hoc intergroup comparisons or chi-square test, where appropriate. See also Figure S8.
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notion that MTA3 suppresses ESCC stemness in vivo through the SOX2OT/SOX2 axis and SOX2OT is

essential for MTA3’s repressive function of cancer stemness.

DISCUSSION

The biological and clinical significance of the MTA family members in malignancies has been well estab-

lished. The levels of these factors have even been proposed as potential diagnostic parameters, and tar-

geting each one of the family members could be potential treatments for different cancers (Ning et al.,

2014). However, unlike MTA1 andMTA2, which were mainly involved in cancer progression and metastasis,

MTA3 possesses both tumor-suppressing and tumor-promoting properties depending on specific cancer

types (Ning et al., 2014). We found that, by targeting the SOX2OT/SOX2 axis, MTA3 represses metastasis

and cancer stemness in ESCC. Further mechanistic studies demonstrated that MTA3 is recruited by GATA3

to repress SOX2OT transcription. Given the fact that alterations of MTA3 as well as its downstream

SOX2OT/SOX2 axis highly correlate with clinical outcomes and the predictability of prognosis, the levels

of MTA3, SOX2, and SOX2OT, especially low-MTA3/high-SOX2, could be used as diagnostic parameters,

and targeting either MTA3 or the SOX2/SOX2OT axis could be potential therapeutic strategies in ESCC

treatment.

Different research groups including ours have extensively studied the well-established regulatory role of

MTA3 in EMT (Ning et al., 2014). We found that MTA3 is significantly downregulated in gastroesophageal

Figure 5. The Dysregulated MTA3-SOX2OT-SOX2 Axis Is Associated with Metastasis and Poor Prognosis

(A–C) Pearson’s correlations of MTA3 and SOX2OT (A), MTA3 and SOX2 (B), SOX2OT and SOX2 (C) in 32 primary human

ESCC specimens.

(D) ROC curve analysis was performed to determine the cutoff score for the overexpression of SOX2.

(E) Kaplan-Meier curves compared the overall survival in patients with ESCC with high and low protein levels of SOX2.

(F) Correlation of MTA3 and SOX2 IHC score in 125 primary human ESCC specimens (left panel). Percentage of samples

showing low or high SOX2 ratio relative to the levels of MTA3 in 125 cases of human ESCC samples (right panel). Scale

bars: left panels, 400 mm; right panels, 100 mm.

(G and H) Overall survival in patients with ESCCwith tumors with low-MTA3/high-SOX2 (G) or low-MTA3 and other groups

(H). **p < 0.01 by chi-square test.
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junction adenocarcinoma and its downregulation is highly associated with upregulated Snai1 and

enhanced EMT (Dong et al., 2013). Accordingly, MTA3 represses ESCC metastasis and cancer stemness.

This finding is in line with the fact thatMTA3 is capable of inhibiting the initiation of primitive hematopoiesis

in vertebrate embryos (Li et al., 2009), repressing EMT in breast cancer cells (Fujita et al., 2003), and sup-

pressing Wnt4 pathway in mammary epithelial cells (Zhang et al., 2006a), implicating a role for MTA3 in

regulation of stem cell properties. More importantly, the results from our gain-of-function and loss-of-func-

tion experiments demonstrated that, instead of targeting Snai1, Twist1, Twist2, and ZEB1, MTA3 inhibits

ESCCmetastasis and cancer stemness by repressing SOX2OT/SOX2 axis. To our knowledge, this is the first

report about MTA3’s regulatory role in cancer stemness in ESCC.

Similar to SOX2, SOX2OT is highly expressed in embryonic stem cells and downregulated upon the

induction of differentiation (Shahryari et al., 2014). The dysregulation of SOX2OT and SOX2 have

been noticed in some cancers, including esophageal squamous cell carcinoma (Shahryari et al.,

2014), lung squamous cell carcinoma (Hou et al., 2014), and breast cancer (Askarian-Amiri et al.,

2014). Moreover, SOX2OT and SOX2 are co-upregulated in breast cancer cell lines during suspended

culturing with enhanced CSC-like properties (Askarian-Amiri et al., 2014). Both SOX2OT and SOX2 have

also been reported to promote cancer cell metastatic potential (Li et al., 2018). Although the roles of

SOX2OT in SOX2 regulation are not well established, it appears that SOX2OT regulates SOX2 tran-

scriptionally (Li et al., 2018; Zhang et al., 2017). In pancreatic ductal adenocarcinoma, the transcription

regulator Yin Yang-1 (YY1) occupies the SOX2OT promoter and suppresses its transcription (Zhang

et al., 2017). Androgen receptor (AR) binds to the promoter of SOX2OT and modulates RNA polymer-

ase II-driven SOX2OT expression in mouse forebrains and embryonic neural stem cells (Tosetti et al.,

2017). SOX2OT is also regulated by microRNAs such as miR-211 (Shafiee et al., 2016). Gene amplifica-

tion and promoter hypomethylation of SOX2OT gene are strongly associated with higher expression of

SOX2OT (Brennan et al., 2017; Hou et al., 2014). We found that MTA3 is recruited by GATA3 to the

promoter region of SOX2OT and subsequently represses SOX2OT transcription. Therefore, low levels

Variables Univariate Analysis p Value Multivariate Analysis p Value

HR (95% CI) HR (95% CI)

Gender

Male versus Female 1.421 (0.730–2.766) 0.301 1.477 (0.743–2.935) 0.266

Age

R60 versus <60 1.526 (0.880–2.645) 0.132 1.547 (0.883–2.711) 0.128

Histologic grade

Poor/Moderate versus Well 1.586 (0.879–2.860) 0.126 1.833 (0.938–3.582) 0.076

Tumor size

R5 cm versus < 5 cm 1.237 (0.698–2.191) 0.466 0.975 (0.544–1.751) 0.934

Tumor depth

T3/T4 versus T1/T2 3.332 (1.200–9.246) 0.021 1.529 (0.490–4.775) 0.465

Lymph node metastasis

Positive versus Negative 1.484 (0.844–2.612) 0.170 0.654 (0.327–1.307) 0.229

Stage

III versus I/II 3.940 (1.774–8.750) 0.001 3.297 (1.253–8.675) 0.016

Combination of MTA3 and SOX2

Low MTA3/High SOX2 versus Others 3.738 (2.151–6.498) 0.000 3.273 (1.815–5.901) 0.000

Table 1. Univariate and Multivariate Cox Proportional Hazards Model Predicting Survival in ESCC

ESCC, esophageal squamous cell carcinoma; HR hazard ratio; CI, confidence interval.
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of MTA3 lead to upregulation of both SOX2OT and SOX2, which ultimately enhances cancer stemness

in ESCC.

It has been reported that GATA3 plays an important role in the regulation of CSC activities (Yang

et al., 2017) and loss of GATA3 contributes to breast cancer metastasis (Si et al., 2015). In addition,

GATA3 is mutated in >10% of breast tumors (The Cancer Genome Atlas Network, 2012). Mutations

in the second zinc finger domain of GATA3 diminishes or abolishes its DNA-binding ability and re-

duces its stability in human breast cancers (Usary et al., 2004). These findings altogether suggest

that GATA3 mutations are ‘‘drivers’’ of breast cancer development. Of note, MTA3 physically interacts

with GATA3 and regulates a subset of genes that control EMT in breast cancer cells (Si et al., 2015). In

this study, we identified a critical role of GATA3 in mediating MTA3-repressed SOX2OT. Of note, ge-

netic changes (mutation, amplification, and deletion) of GATA3 are extremely rare in esophageal can-

cer (0.62%, Table S3). Therefore, dysfunctional MTA3, not GATA3, likely to be a ‘‘driver’’ in esophageal

cancer development and the MTA3/SOX2OT/SOX2 axis, plays an inhibitive role in esophageal cancer

stemness.

Given that MTA3 is one of the master regulators of EMT, it is not surprising to find that hundreds of

genes were up- or down-regulated by MTA3 (Figure S6A). However, we conclude that SOX2, through

the SOX2OT/SOX2 axis, plays an overwhelmingly prominent role in MTA3-regulated cancer stemness

based on the following evidence. (1) SOX2 is the only MTA3 target among the stemness-related genes

tested (Figures S6A and S6C–S6E). (2) Results from the experiments using animal models showed that

MTA3 and SOX2OT and/or SOX2 are capable of inhibiting and enhancing tumor growth, respectively.

More importantly, the inhibitory effect of MTA3 on tumor growth is SOX2 and SOX2OT dependent

(Figure 6). (3) Both SOX2 and SOX2OT play indispensable roles in MTA3-regulated cancer stemness

(Figures 4 and S8). (4) The inverse relationship between MTA3 and SOX2 is not only frequently

observed in ESCC tissue but also highly correlated with patients’ overall survival (Figure 5). Therefore,

targeting the MTA3/SOX2OT/SOX2 axis could be an efficacious therapy for the ESCC caused by dys-

regulation of this axis. In fact, targeting lncRNAs in vivo specifically by RNA-targeting therapeutics and

LNA appears to be a practically attractive clinical tool (Leucci et al., 2016). Therefore, the current study

not only identified a previously unrecognized molecular mechanism in MTA3-regulated cancer stem-

ness but also implicated a great potential of the MTA3/SOX2OT/SOX2 axis in diagnosis, prognosis,

and treatment of ESCC.

Limitations of the Study

Based on the results mainly derived from overexpression and/or knockdown of different genes in cultured

cells and xenograft mouse models, we were able to demonstrate that, by targeting/repressing the

SOX2OT/SOX2 axis, MTA3 can suppress cancer stemness and EMT in ESCC. However, the conclusions

would be strengthened if the relevant experiments were conducted in tissue-specific MTA3 transgenic

and/or MTA3 knockout mice. However, owing to the lack of esophagus-specific loxP-Cre constructs

currently, we will not be able to conduct such animal experiments. Furthermore, the clinical significance

of this MTA3-SOX2OT/SOX2 axis needs to be validated in larger clinical cohorts (Wang et al., 2013)

(Dong et al., 2017a, 2017b).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Figure 6. MTA3 Suppresses Tumor Growth via the SOX2OT-SOX2 Axis in ESCC Cells

(A and B)Western blot for MTA3 and SOX2 in EC9706 cells stably expressingMTA3 and SOX2 expression construct (A), or shMTA3 and shSOX2 construct (B).

b-Actin is shown as a loading control.

(C–E) Growth curves of tumor formation of the EC9706 cells stably expressing MTA3 and SOX2OT (C) or SOX2 (D), or shMTA3 and shSOX2 (E) (upper left

panel). Weight (upper right panel) and tumors (lower panel) at the end of the experiments (n = 10 per group).

(F–H) EMT and stemness markers in tumors derived from mice models injected with EC9706 cells stably expressing MTA3 and SOX2OT (F) or SOX2 (G), or

shMTA3 and shSOX2 (H) detected by IHC. Scale bars: 400 mm in (F–G).

(I–K) SP+ and CD44+ cells in tumors derived frommicemodels injected with EC9706 cells stably expressingMTA3 and SOX2OT (I) or SOX2 (J), or shMTA3 and

shSOX2 (K). Histograms showing the proportion of CD44+ cells in the indicated cells (right panels).

Data are shown as the means of three independent experiments or representative data. Error bars indicate SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-

way ANOVA with post hoc intergroup comparisons.
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Supplemental figures and legends 

 

Figure S1. Related to Figure 1. MTA3 is highly enriched in human digestive organs and 

downregulated in human esophageal squamous cell carcinoma (ESCC). (A) IHC score of MTA3 in 

various human normal organs was investigated in the Human Protein Atlas database, red arrow indicates 

esophagus. (B) Representative IHC images of MTA3 in the indicated digestive organs, including esophagus, 

breast was used as positive control. All images were obtained from Human Protein Atlas database. Scale 

bars: 200 μm. (C) MTA3 mRNA expression in an ESCC microarray dataset from GEO, GSE26886. (D) 



 

MTA3 mRNA expression in a panel of ESCC cell lines (filled bars) and normal esophageal epithelium cells 

(open bar) was analyzed in a microarray dataset from GEO, GSE23964. ***p< 0.001 by one-way ANOVA 

with post hoc intergroup comparisons. 

  



 

 

Figure S2. Related to Figure 2. MTA3 suppresses the metastatic potential of ESCC cells in vitro. (A) 

GSEA plots of enrichment of ALONSO_METASTASIS_EMT_UP signatures in MTA3High tumors versus 

MTA3Low tumors in GSE23400 dataset. (B) Western blot of the indicated epithelial or mesenchymal 



 

markers and MTA3 in EC9706 cells with MTA3 depletion or overexpression, and EC109 cells with MTA3 

depletion, and in HKESC-1 cells and TE12 cells with MTA3 overexpression. β-actin is shown as a loading 

control. (C) Representative images of phalloidin staining of EC9706 cells with MTA3 depletion or 

overexpression and EC109 cells with MTA3 depletion. Scale bars: 20 μm. (D) Invasion or migration of 

EC9706 cells with MTA3 depletion or overexpression, EC109 cells with MTA3 depletion, and HKESC-1 

cells and TE12 cells with MTA3 overexpression were measured by transwell assay with or without matrigel. 

Scale bars: 200 μm. Data were shown as means of three independent experiments. Error bars indicate SEM. 

*p< 0.05, **p< 0.01, ***p< 0.001 by Student’s t-test. 

  



 

 

Figure S3. Related to Figure 2. MTA3 regulates the tumor growth of ESCC cells and metastasis in 

vivo. (A) GSEA plots of enrichment of CELL_PROLIFERATION_GO_0008283 signatures in MTA3High 

tumors versus MTA3Low tumors in the GSE23400 dataset. (B) GSEA plots of enrichment of 

BIOCARTA_MTA3_PATHWAY in ESCC tissues with non-lymph node metastasis versus ESCC tissues 

with lymph node metastasis in the GSE47404 dataset. (C) Growth curves for tumor formation of the 



 

EC9706 cells with MTA3 depleted were generated (upper panel). Tumors were resected (lower left panel) 

and weighed (lower right panel) at the end of the experiments (n = 5 shCtrl, n = 5 shMTA3). (D) Growth 

curves for tumor formation of the EC109 cells MTA3 depleted were generated (upper panel). Tumors were 

resected (lower left panel) and weighed (lower right panel) at the end of the experiments (n = 5 shCtrl, n = 

5 shMTA3). (E) Growth curves for tumor formation of the EC9706 cells with MTA3 overexpressed were 

generated (upper panel). Tumors were resected (lower left panel) and weighed (lower right panel) at the 

end of the experiments (n = 5 Vector, n = 5 MTA3). (F) Growth curves for tumor formation of the HKESC-

1 cells with MTA3 overexpressed were generated (upper panel). Tumors were resected (lower left panel) 

and weighed (lower right panel) at the end of the experiments (n = 5 Vector, n = 5 MTA3). (G) Western blot 

of the indicated epithelial or mesenchymal markers and MTA3 in tumors derived from EC9706 cells with 

MTA3 depleted (left panel) and EC109 cells with MTA3 depleted (right panel). (H) Western blot of MTA3 

in TE1 cells with MTA3 depleted. (I) TE1 cells that transfected with shMTA3 or shCtrl were infected with 

lentiviruses carrying luciferase and then subjected for RNA extraction followed by qRT-PCR analysis of 

luciferase gene. (J) The TE1 cells with or without MTA3 depleted were infected with recombinant 

lentiviruses carrying luciferase and injected subcutaneously into the flanks of nude mice (n = 8). The 

inguinal lymph nodes of the mice were extracted and analyzed for the presence of metastatic cells by 

bioluminescence imaging. Data were shown as the means from at least three independent experiments or 

representative data. Error bars indicate SEM. **p<0.01, ***p<0.001 by Student’s t-test or chi-square test, 

where appropriate. 

  



 

 

Figure S4. Related to Figure 2. MTA3 shows no effect on canonical EMT regulators. (A-C) QRT-PCR 

of MTA3, Snai1, Twist1, Twist2 and ZEB1 in EC9706 (A), EC109 (B) and TE1 (C) cells with MTA3 depleted. 

(D) Western blot of the indicated epithelial and mesenchymal markers, or EMT regulators in the indicated 

cells. (E-G) Snai1 luciferase reporter activity was analyzed in EC9706 (E), EC109 (F) and TE1 (G) cells 

with MTA3 depleted. Data were shown as the means from at least three independent experiments or 

representative data. Error bars indicate SEM. n.s., not statistically significant; ***p<0.001 by Student’s 

t-test. 

  



 

 

Figure S5. Related to Figure 2. MTA3 regulates stemness in ESCC cells and negatively correlates 

with stemness signature in various cancers. (A) Representative images of spheres formed by EC109 cells 

with MTA3 depleted, or HKESC-1 cells and TE12 cells with MTA3 overexpressed (left panel). Histograms 

showing the fold change in the number of spheres formed by EC109 cells with MTA3 depleted (right panel). 

Scale bars: 200 μm. (B) Flow cytometry analysis of the CD44+ population in EC109 cells with MTA3 



 

depleted, or HKESC-1 cells and TE12 cells with MTA3 overexpressed. Histograms showing the proportion 

of CD44+ cells in the indicated cells (right panel). (C) Hoechst 33342 dye exclusion assay of the SP+ 

population in EC109 cells with MTA3 depleted. Histograms showing the proportion of SP+ cells in EC109 

cells with MTA3 depleted (right panel) (D) Representative images of immunofluorescence for CD44 

expression in EC109 cells with MTA3 depleted. Scale bars: 40 μm. (E-H) GSEA plots of enrichment of 

BOQOEST_STEM_CELL_UP signatures in MTA3High tumors versus MTA3Low tumors in the HNSCC 

(GEO dataset GSE10300, n = 44), OSCC (GEO dataset GSE37991, n = 40), BRCA (TCGA dataset, n = 

1222), PAAD (TCGA dataset, n = 182). Data were shown as the means from at least three independent 

experiments or representative data. Error bars indicate SEM. ***p<0.001 by Student’s t-test. 

  



 

 

Figure S6. Related to Figure 3. MTA3 suppresses SOX2 expression indirectly. (A) Heat map showing 

fold change expression of stemness signatures in shMTA3 versus shCtrl EC9706 cells based on qPCR array. 

(B) The expression of 11 genes upregulated by MTA3 depletion (more than 1.5 folds) was analyzed in 

ESCC using TCGA dataset (Titled ESCA), which includes 82 ESCC tissues and 11 normal esophageal 

tissues. (C and D) QRT-PCR of SOX2, CHEK1, and TAZ in the indicated cells with MTA3 depleted (C) or 

overexpressed (D). (E) Western blot of SOX2 in EC9706 cells with MTA3 depleted or overexpressed and 

EC109 cells with MTA3 depleted, and HKECS-1 with MTA3 overexpressed. (F and G) SOX2 luciferase 



 

reporter was transfected into EC9706 cells with MTA3 depleted (F) or overexpressed (G). The relative 

SOX2 Gaussia luciferase reporter activities were measured at 72 h after transfection. Data were shown as 

the means from at least three independent experiments or representative data. Error bars indicate Error bars 

indicate SEM. n.s., not statistically significant, *p<0.05, **p<0.01, **p<0.01 by Student’s t-test. 

  



 

 

Figure S7. Related to Figure 3. MTA3-repressed SOX2OT transcription depends on GATA3. (A) ChIP 

assay using antibodies against MTA3 or IgG. qPCR to detect the enriched DNA fragments in the SOX2OT 

promoter region in TE1 cells. (B) Western blot of GATA3 in HKESC-1 transfected with the MTA3 or 

shGATA3 plasmids or in combinations between MTA3 and shGATA3. β-actin is shown as a loading control. 

(C) SOX2OT luciferase reporter activity in MTA3 overexpressed HKESC-1 cells that transfected with 

shGATA3 expressing plasmid. Data were shown as the means of three independent experiments or 

representative data. Error bars indicate SEM. **p < 0.01, ***p < 0.001 by Student’s t-test or a one-way 

ANOVA with post hoc intergroup comparisons, where appropriate. 

  



 

 

Figure S8. Related to Figure 4. MTA3 regulates CD44+ population and SP+ population via SOX2OT. 

(A and B) EC9706 cells transfected with a combination of the shMTA3 expressing plasmid and SOX2OT 

AS oligo (A), or of the MTA3 and SOX2OT expressing plasmid (B) were subjected to flow cytometry 



 

analysis of the CD44+ population. (C and D) EC9706 cells transfected with a combination of the shMTA3 

expressing plasmid and SOX2OT AS oligo (C), or of the MTA3 and SOX2OT expressing plasmid (D) were 

subjected to Hoechst 33342 dye exclusion assay of the SP+ population. Histograms showing the positive 

formed by the indicated cells (right panels). Data were shown as the means from at least three independent 

experiments or representative data. Error bars indicate SEM. ***p< 0.001 by one-way ANOVA with post 

hoc intergroup comparisons. 



 

Supplemental tables 

Table S1. Related to Figure 1. Relationship between MTA3 expression and clinicopathologic variables in 
tissue samples of ESCC 

a. ESCC, esophageal squamous cell carcinoma. 

Variables No. of patients 
MTA3 expression 

p-value 
Low, no. (%) High, no. (%) 

All patients                   125 78 (62.4) 47 (37.6)  

Gender     

Male  93 58 (62.4) 35 (37.6) 0.989 

  Female  32 20 (62.5) 12 (37.5)  

Age (years)     

< 60 63 42 (66.7) 21(33.3) 0.321 

≥ 60 62 36(58.1) 26 (61.9)  

Histologic grade     

Well 46 28 (60.9) 18 (39.1) 0.112 

Moderate              64 37 (57.8) 27 (42.2)  

Poor 15 13 (86.7) 2 (13.3)  

Tumor size     

< 5 cm 46 31 (67.4) 15 (32.6) 0.379 

≥ 5 cm 79 47 (59.5) 32 (40.5)  

Tumor depth      

T1/T2  23 9(39.1) 14 (60.9) 0.011 

T3/T4 102 69 (67.6) 33 (32.4)  

Lymph node metastasis     

Negative 55 35(63.6) 20 (36.4) 0.800 

Positive 70 43(61.4) 27 (38.6)  

Stage     

  I-II 39 19(48.7) 20 (51.3) 0.033 

  III 86 59(68.6) 27 (31.4)  



 

Table S2. Related to Figure 1. Univariate and multivariate Cox proportional hazards model predicting 
survival in ESCC 

Variables 
Univariate analysis 

p-value 
Multivariate analysis 

p-value 
HR (95% CI) HR (95% CI) 

Gender     

Male vs. Female 1.421(0.730-2.766) 0.301 1.787 (0.901-3.544) 0.097 

Age     

≥ 60 vs. <60 1.526 (0.880-2.645) 0.132 1.712 (0.973-3.014) 0.062 

Histologic grade     

Poor / Moderate vs. Well 1.586 (0.879-2.860) 0.126 1.663 (0.855-3.235) 0.134 

Tumor size     

≥ 5 cm vs. < 5 cm 1.237 (0.698-2.191) 0.466 1.062 (0.586-1.922) 0.844 

Tumor depth     

T3/T4 vs. T1/T2 3.332 (1.200-9.246) 0.021 1.487 (0.494-4.472) 0.480 

Lymph node metastasis      

Positive vs. Negative 1.484 (0.844-2.612) 0.170 0.911 (0.465-1.783) 0.786 

Stage     

Ⅲ vs. Ⅰ/Ⅱ 3.940 (1.774-8.750) 0.001 3.417 (1.360-8.586) 0.009 

MTA3 expression     

Low vs. High 2.988 (1.498-5.958) 0.002 2.717 (1.333-5.537) 

 

0.006 

a. ESCC, esophageal squamous cell carcinoma; b. HR, hazard ratio; c.CI, confidence interval. 



 

Table S3. Related to Figure 3. Summary of GATA3 genetic change in ESCC 

Study cohorts Mutation Amplification Deletion Total 

Esophageal Carcinoma 

(TCGA, Provisional) 
0 1 1 96 

Esophageal Squamous Cell Carcinoma 

(UCLA, Nat Genet 2014) 
0 0 0 139 

Esophageal Squamous Cell Carcinoma 

(ICGC, Nature 2014) 
0 0 0 88 

Total 0 1 1 323 

a. ESCC, esophageal squamous cell carcinoma; b. TCGA, the Cancer Genome Atlas; c. UCLA, University of 
California, Los Angeles; d. ICGC, International Cancer Genomics Consortium. 

  



 

Transparent Methods 

Clinical patients and samples 

Paraffin-embedded specimens and snap-frozen fresh ESCC tissues with their normal adjacent tissues were 

obtained from ESCC patients underwent surgeries at Affiliated Tumor Hospital of Shantou University 

Medical College. All samples were histopathologically and clinically diagnosed as ESCC. Patients who 

underwent preoperative neoadjuvant chemotherapy or radiotherapy for ESCC were excluded from this 

study. 

Tissue microarray and immunohistochemistry 

A tissue microarray (TMA) was conducted using paraffin-embedded specimens from 125 ESCC patients 

(male, n = 93; Female, n = 32) and their normal adjacent tissues as previously described (Dong et al., 2017b). 

Immunohistochemistry (IHC) staining was performed as previously described (Dong et al., 2017b). Briefly, 

the TMA blocks or the tumor xenograft tissues were sliced into 4-μm sections and immune-stained with 

antibodies against MTA3 (Bethyl Laboratories Inc., catalog no. A300-160A), SOX2 (Cell Signaling 

Technology, catalog no. 23064), or CD44 (Cell Signaling Technology, catalog no. 3570). Immunostaining 

scores were determined by combination of staining intensity and the percentage of positively stained cells. 

Staining intensity was categorized as follows: 1, negative; 2, light yellow; 3, brown. The proportion of 

positive cells was scored as follows: 0 (0% positive cells); 1 (1%–25% positive cells); 2 (26%–50% positive 

cells); 3 (51%–75% positive cells); 4 (76%–100% positive cells). Two independent pathologists without 

the clinical and pathological information independently reviewed and scored the immunostaining.  

Cell lines and cell culture 

The human ESCC cell lines EC109 and EC9706 (obtained from the Cell Bank of the Chinese Academy of 



 

Sciences, Shanghai, China), and HKESC-1, HKESC-2, and HKESC-3 (kindly provided by Dr. S.W. Tsao, 

University of Hong Kong, China), and KYSE510 (obtained from the American Type Culture Collection) 

were cultured in RPMI 1640 (Gibco/Invitrogen) supplemented with 10% FBS (Gibco/Invitrogen). TE1 and 

TE12 (kindly provided by Dr. X.C. Xu, UT M.D. Anderson Cancer Center, USA) were cultured in 

Dulbecco’s Modified Eagle Media (DMEM, Gibco/Invitrogen) supplemented with 10% FBS 

(Gibco/Invitrogen). The human immortalized esophageal epithelial cell lines NE2 and NE3 (kindly 

provided by Dr. S.W. Tsao, University of Hong Kong, China) were cultured in Defined Keratinocyte-SFM 

medium (DK-SFM, Gibco/Invitrogen). EC109, EC9706, HKEC-1, HKESC-3, TE1 and TE12 were derived 

from male patients with ESCC. HKESC-2 and KYSE-510 were derived from female patients with ESCC. 

NE2 and NE3 were derived from normal human esophageal tissue samples. 

Transfection and infection 

The full-length cDNA of MTA3 was PCR amplified from EC9706 cells and cloned into the pCDNA3.1-

flag plasmid. The shRNA targeting human MTA3 (target sequence: GAGGATACCTTCTTCTACTCA) was 

cloned into pBabe/U6 plasmid. The plasmid carrying SOX2, and the plasmid carrying shGATA3 or shSOX2 

targeted to the human GATA3 or SOX2 (shGATA3 target sequence: GATGCAAGTCCAGGCCCAA; 

shSOX2 target sequence: GGTTGACACCGTTGGTAATTT) were obtained from GeneCopoeia. The 

pEZX-PG04 plasmid carrying double-expression cassette for Gaussia luciferase (GLuc) under the control 

of the SOX2OT, SOX2, or Snai1 promoter, and secreted Alkaline Phosphatase (SeAP) under the control of 

CMV promoter were obtained from GeneCopoeia. pIRES2-ZsGreen1-SOX2OT plasmid and SOX2OT-

GLuc plasmid with deletion of GATA3 binding sites between −1176 to −1169 bp (ΔGATA3 #1), −861 to 

−854 bp (ΔGATA3 #2), −291 to −284 bp (ΔGATA3 #3), or all the three GATA3 binding sites were 

constructed by Youbio (Hunan, China). The antisense locked nucleic acid (LNA) GapmeR targeting 

SOX2OT (SOX2OT AS): 5’-TCTTACTGAATGGAGG-3’ and non-targeting LNA GapmeR (Scr): 5’-



 

AACACGTCTATACGC-3’ were obtained from Exiqon (Vedbaek, Denmark). Recombinant lentiviruses 

carrying luciferase gene were obtained from GeneChem (Shanghai, China). Transfection of plasmids or 

LNA GapmeR was performed using Lipofectamine 3000 (Thermo Fisher Scientific, catalog no. L3000015) 

according to the manufacturer’s instructions. Concentrated viruses carrying luciferase gene were used to 

infect cells in a 6-well plate with 10 μg/ml polybrene. 

The quantitative real-time PCR assay 

Total RNA was isolated from cultured cells, ESCC tissues or xenograft tissues by the TRIzol reagent 

(ThermoFisher, catalog no. 15596-018), and reverse transcribed using High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, catalog no. 4368813) according to the manufacturer instructions. 

The cDNA was amplified and quantified in the ABI-7500 system (Applied Biosystems) by using SYBR 

Green Master (Roche). The cDNA was subjected to quantitative real-time PCR (qRT-PCR) with the 

following primers: MTA3 forward: 5’-AAGCCTGGTGCTGTGAAT-3’ and reverse: 5’-

AGGGTCCTCTGTAGTTGG-3’; SOX2OT forward: 5’-GCTCGTGGCTTAGGAGATTG-3’ and reverse: 

5’-CTGGCAAAGCATGAGGAACT-3’; SOX2 forward: 5’-CATCACCCACAGCAAATGACA-3’ and 

reverse: 5’-GCTCCTACCGTACCACTAGAACTT-3’; Snai1 forward: 5’-

TCTGAGGCCAAGGATCTCCA-3’ and reverse: 5’-CATTCGGGAGAAGGTCCGAG-3’; Twist1 forward: 

5’-AGACCTAGATGTCATTGTTTCCA-3’ and reverse: 5’-TTGGCACGACCTCTTGAGAAT-3’; Twist2 

forward: 5’-CTGCCATTGCCAGACCTTCT-3’ and reverse: 5’-GATGGTGTTGGCAGTGTTGC-3’; 

ZEB1 forward: 5’-TTCTCCCTCCCCTCTGGGAT-3’ and reverse: 5’-CCTATGCTCCACTCCTTGCT-3’; 

Luciferase forward: 5’-ACTGGGACGAAGACGAACAC-3’ and reverse: 5’-

GGCGACGTAATCCACGATCT-3’; β-actin forward: 5’-GAACCCCAAGGCCAACCGCGAGA-3’ and 

reverse: 5’-TGACCCCGTCACCGGAGTCCATC-3’.  

Western blot analysis 



 

Proteins in the lysates of the cultured cells or xenograft tissues were separated on SDS-PAGE, transferred 

onto the PVDF membranes. The membranes were incubated with primary antibodies against MTA3 

(Bethyl Laboratories Inc., catalog no. A300-160A), SOX2 (Cell Signaling Technology, catalog no. 23064), 

E-Cadherin (BD Bioscience, catalog no. 610181), N-Cadherin (BD Bioscience, catalog no. 610920), 

Vimentin (Cell Signaling Technology, catalog no. 3932), GATA3 (Santa Cruz Biotechnology, catalog no. 

sc-268), Snai1 (Cell Signaling Technology, catalog no. 3879), Twist1 (Cell Signaling Technologies, catalog 

no. 46702), Twist2 (Abcam, catalog no. ab66031), and ZEB1 (Abcam, catalog no. ab203829), and β-actin 

(Cell Signaling Technology, catalog no. 4970), followed by HRP-conjugated secondary antibodies as 

previously described (Feng et al., 2014). Protein bands were visualized with SuperSignal West Pico 

Luminol/Enhancer Solution (Thermo Scientific). 

Transwell assay 

After starvation for 24 h, the cells (1×105) in 200ul serum-free RPMI 1640 were seeded onto the upper 

compartment of a 24-well chamber pre-coated with (Invasion assay) or without (Migration assay) matrigel 

(BD Biosciences, catalog no. 356234). The lower compartment was filled with 500ul RPMI 1640 

supplemented with 10% FBS. After 24-48 h of incubation, the invaded/migrated cells were fixed with 

methanol, stained with 0.1% crystal violet, and counted under a microscope. All experiments were 

performed in triplicate. 

Phalloidin staining 

Cells were fixed with 4% paraformaldehyde for 20 min and blocked in 5% BSA for 30 min at room 

temperature. Fixed cells were then incubated with 5μg/ml of phalloidin (Invitrogen, catalog no. A12381) 

in dark for 30 min at 37°C. Phalloidin staining was observed under ZEISS LSM800 confocal fluorescence 

microscope (ZEISS, Germany). 



 

Sphere formation assays 

Cells were seeded in 6-well ultra-low attachment plates (Corning, catalog no. 3471) in DMEM/F12 serum-

free medium (Gibco/Invitrogen) supplemented with 10 ng/ml EGF (PeproTech, catalog no. AF-100-15), 10 

ng/ml bFGF (PeproTech, catalog no. 100-18B) and 1×N2 (Life Technologies, catalog no. 17502-048). After 

incubation of 1-2 weeks, the number of tumorspheres was counted under a microscope (Olympus, Tokyo, 

Japan). 

Flow cytometry 

For CD44+ subpopulation analysis, cells were suspended in 250μl ice-cold PBS and incubated with either 

anti-Human/Mouse CD44 PE-Cyanine5 antibody (eBioscience, catalog no. 15-0441) or Rat IgG2b K 

Isotype Control PE-Cyanine5 (eBioscience, catalog no. 15-4031) for 90 min at 4°C with gentle rotation. 

Then, the cells were washed twice with ice-cold 1×PBS before flow cytometric analysis. The data were 

analyzed by BD Accuri C6 Software (BD Biosciences, USA). For hoechstside-population analysis, 

cells were suspended in 500μl of DMEM supplemented with 10% FBS and pre-incubated with or without 

100 μM verapamil (Sigma-Aldric, catalog no. V4629) for 15 min at 37°C. Subsequently, the cells were 

incubated with 5 μg/ml Hoechst 33342 dye (Sigma-Aldrich, catalog no. 14533) for 1 h at 37°C. Finally, the 

cells were incubated on ice for 5 min and washed twice with ice-cold 1×PBS before flow cytometric 

analysis. The data were analyzed by FlowJo 10 (FLOWJO, LLC, Ashland, USA). 

Immunofluorescence and confocal microscopy assays 

Spheres were collected by centrifugation at 1500×g for 5 min and gently resuspended in 1×PBS. The 

suspension was transferred to a glass slide and a smear was prepared. The smear was left to dry at 37°C 

followed by immunofluorescence analysis as described previously (Gan et al., 2016). Nuclei were stained 

with DAPI. Images were captured using ZEISS LSM800 confocal fluorescence microscope (ZEISS, 



 

Germany). 

Stemness signatures-related gene qPCR array 

The cDNA of EC9706 cells transfected with shMTA3 or shCtrl was used for stemness signature analysis 

using Custom Gene qPCR Arrays (GeneCopoeia, catalog no. PAG-CS). The mRNA levels of 78 stemness 

genes were measured by SYBR™ Green PCR Master Mix (Applied Biosystems, catalog no. 4309155) with 

the Applied Biosystems 7500 Real-Time PCR system (Applied Biosystems). 

Gaussia luciferase assay 

Cells were transiently transfected with the indicated Gaussia luciferase plasmids using Lipofectamine 3000 

(Thermo Fisher Scientific, catalog no. L3000015) according to the manufacturer’s instructions, and 

incubated for 72 hours. The culture medium was collected and subjected for analysis of Gaussia luciferase 

(GLuc) and secreted Alkaline Phosphatase (SeAP) activities using a Secrete-PairTM Dual Luminescence 

Assay Kit (GeneCopoeia, catalog no. SPDA-D010) according to the manufacturer’s instructions. GLuc 

activity was normalized to SeAP activity.  

Chromatin immunoprecipitation assay  

The chromatin immunoprecipitation (ChIP) assay was performed using an EZ-Magna ChIP™ A ChIP kit 

(Millipore, catalog no. 17-408) as described previously (Dong et al., 2017b). Briefly, cells were cross-linked 

with 1% (v/v) formaldehyde on ice for 10 minutes and sonicated to shear chromatin DNA into ~200-1000 

bp in length by a Bioruptor Sonicator (Diagenode, Sparta, NJ, USA). Immunoprecipitation was done with 

antibodies against MTA3 (Bethyl Laboratories Inc., catalog no. A300-160A) or IgG (Sigma Aldrich, St 

Louis, MO, USA) with 20μl of protein A magnetic beads gently rotated at 4°C overnight. After washing by 

wash buffer, the immunoprecipitated DNA was then used for semi-quantitative PCR or qPCR analysis using 



 

the following primers: P #1 forward: 5’-AGAGAATCTCAAGGTCACCAGG-3’ and reverse: 5’-

TGGCCATTCTTTTGCACTTGG-3’; P #2 forward: 5’-CATGCAATTTACTCTGGAGGCA-3’ and 

reverse: 5’-TTCATCACTTCTGCAATTGACCA-3’; P #3 forward: 5’-

AATTGTGAACACTGTTTTTAAGCAA-3’ and reverse: 5’-CCCTAAGTGTGCCATTTGCC-3’; GADPH 

(negative control) forward: 5'-TCCTCCTGTTTCATCCAAGC-3' and reverse: 5'-

TAGTAGCCGGGCCCTACTTT-3' (Si et al., 2015). 1% of the supernatant was used as input. 

Proximity ligation assay 

The Proximity Ligation Assay (PLA) kit (Duolink®using PLA®Technology, Sigma–Aldrich) was 

employed to detect the interaction between MTA3 and GATA3 (Dong et al., 2017a). In brief, cells grown 

on glass coverslips were fixed with 4% paraformaldehyde followed by permeabilization in 0.2% Triton X-

100 and blocking in 5% BSA. The cells were then incubated with rabbit anti-MTA3 and mouse anti-GATA3 

antibodies and followed by incubation with secondary plus and minus probes, PLA–anti-(rabbit IgG) and 

PLA–anti-(mouse IgG). The ligation solution was added followed by an amplification solution. The PLA 

signals were visualized under ZEISS LSM800 confocal fluorescence microscope (ZEISS, Germany).  

Animal experiments 

For tumor growth assay, xenografting was performed as described previously (Dong et al., 2017b). Briefly, 

indicated cells (1×106 cells for EC9706 and EC109; 4×106 cells for HKESC-1) were injected 

subcutaneously into flanks of 5- to 6-week-old female nude mice (Vital River Laboratory Animal 

Technology Co. Ltd.). The tumor growth was monitored for 4 or 5 weeks. The tumor size was measured 

weekly using a slide caliper and tumor volume was calculated by the following formula: volume = 0.5236 

× length × width2. At the end of the experiment, mice were sacrificed and tumors were excised, 

photographed and used for RNA and protein purification or reserved in paraffin block. For inguinal lymph 



 

node metastasis, cells were infected with recombinant lentiviruses carrying luciferase, and these cells 

(1×106 cells for EC9706; 5×106 cells for TE1) were injected subcutaneously into the flanks of 5- to 6-week-

old female nude mice (8 mice per group). The mice were monitored for inguinal lymph node metastasis 

once weekly by injection of 150 mg/kg of D-luciferin (Solarbio, Beijing, China; catalog no. D9390) 

intraperitoneally. 10-15 min after injection, mice were anesthetized and bioluminescence was imaged with 

Xenogen IVIS System (Xenogen). Mice were sacrificed at day 32, 15 min before mice were sacrificed, D-

luciferin was injected intraperitoneally. After sacrificing, the inguinal lymph nodes were harvested and 

analyzed for the presence of metastatic cells using Xenogen IVIS System (Xenogen). The inguinal lymph 

nodes were then subjected for paraffin blocks, and then tissue sections were stained with H&E for 

histological validation. For lung metastasis, 1×106 of cells were injected into the tail vein of 5- to 6-week-

old female nude mice (6 mice per group). Mice were sacrificed at day 61 and the lungs were fixed in Bouins 

for 24 hours. The lungs were photographed, paraffin blocked, and sectioned for staining. 

Bioinformatic analysis 

The protein levels of MTA3 in different organs were obtained from the Human Protein Atlas database 

(https://www.proteinatlas.org) (Uhlen et al., 2015).ESCC datasets GSE23400 (Su et al., 2011) and 

GSE26886 (Wang et al., 2013) were obtained from the NCBI Gene Expression Omnibus (GEO. 

https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2007) to detect the levels of MTA3. The level of MTA3 

mRNA in ESCC cell lines was analyzed in dataset GSE23964 from GEO. A TCGA dataset (Titled ESCA), 

which includes 81 ESCC tissues and 11 normal esophageal tissues, was downloaded from the TCGA 

database (https://cancergenome.nih.gov/) and analyzed. The alteration of GATA3 gene in ESCC was 

analyzed using cBioPortal database (https://www.cbioportal.org/) (Gao et al., 2013).  

Gene Set Enrichment Analysis 

https://www.proteinatlas.org/
https://cancergenome.nih.gov/
http://www.cbioportal.org/


 

The ESCC dataset GSE23400 (Su et al., 2011) and GSE47404 (Sawada et al., 2015), head and neck 

squamous cell carcinoma (HNSCC) dataset GSE10300 (Cohen et al., 2009), oral squamous cell carcinoma 

(OSCC) dataset GSE37991 (Lee et al., 2013) from GEO, and Breast invasive carcinoma (BRCA) dataset, 

Pancreatic adenocarcinoma (PAAD) dataset from TCGA database were analyzed using GSEA software  

(Version 2.2.1, http://software.broadinstitute.org/gsea/index.jsp) as previously described (Dong et al., 

2017a; Dong et al., 2017b). 

Statistics 

All data were analyzed using the SPSS 17.0 software (SPSS Inc., USA). Receiver operating characteristic 

(ROC) curve analysis was performed to define the cutoff score for the expression of MTA3 and SOX2. The 

χ2 test was used to analyze the correlation between the expression of MTA3 and clinicopathological 

parameters of ESCC patients, the difference between the proportion of inguinal lymph nodes metastasis or 

lung metastasis in shMTA3 and shCtrl mice. Kaplan–Meier was used in plotting the survival curves, and 

the difference was compared by log-rank test. Univariate and multivariate Cox regression survival analyses 

were done to evaluate the survival data. Student’s t-test was used to compare the difference between two 

groups, and one-way ANOVA with post hoc intergroup comparisons was performed to compare the 

difference among more than two groups. Pearson’s correlation coefficients were performed to determine 

the correlations of the mRNA expression between MTA3 and the indicated genes in ESCC tissues. All data 

were presented as the mean ± SEM. A p-value < 0.05 was considered statistically significant. 

Study approval 

Clinical research protocols of this study were reviewed and approved by the Ethics Committee of Cancer 

Hospital of Shantou University Medical College (IRB serial number: #04-070). Written informed consent 

was obtained from patients in accordance with principles expressed in the Declaration of Helsinki. Animals 

http://software.broadinstitute.org/gsea/index.jsp


 

were housed in conventional or pathogen-free conditions, where appropriate, at the Animal Center of 

Shantou University Medical College, in compliance with Institutional Animal Care and Use Committee 

(IACUC) regulations (SUMC2014-148). All animal experiments were performed according to protocols 

approved by the Animal Care and Use Committee of the Medical College of Shantou University.  
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