5,398 research outputs found

    A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity To Cholesterol, And Perturbed Interdomain Coupling

    Get PDF
    Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level understanding of how the wild-type protein functions, we used a multipronged site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and collected information on line shapes, relaxation rates, membrane topology, and distances within the homotetramer in membranes with and without cholesterol. Our results identify marked differences in the conformation and dynamics between the WT and the alanine mutant. Compared to WT, the dominant population of the mutant AH is more dynamic, shallower in the membrane, and has altered quaternary arrangement of the C-terminal domain. While the AH becomes more dynamic, the dominant population of the TM domain of the mutant is immobilized. The presence of cholesterol changes the conformation and dynamics of the WT protein, while the alanine mutant is insensitive to cholesterol. These findings provide new insight into how M2 may facilitate budding. We propose the AH–membrane interaction modulates the arrangement of the TM helices, effectively stabilizing a conformational state that enables M2 to facilitate viral budding. Antagonizing the properties of the AH that enable interdomain coupling within M2 may therefore present a novel strategy for anti-influenza drug design

    Bulk cavitation in model gasoline injectors and their correlation with the instantaneous liquid flow field

    Get PDF
    It is well established that spray characteristics from automotive injectors depend on, among other factors, whether cavitation arises in the injector nozzle. Bulk cavitation, which refers to the cavitation development distant from walls and thus far from the streamline curvature associated with salient points on a wall, has not been thoroughly investigated experimentally in injector nozzles. Consequently, it is not clear what is causing this phenomenon. The research objective of this study was to visualize cavitation in three different injector models (designated as Type A, Type B, and Type C) and quantify the liquid flow field in relation to the bulk cavitation phenomenon. In all models, bulk cavitation was present. We expected this bulk cavitation to be associated with a swirling flow with its axis parallel to that of the nozzle. However, liquid velocity measurements obtained through particle image velocimetry (PIV) demonstrated the absence of a swirling flow structure in the mean flow field just upstream of the nozzle exit, at a plane normal to the hypothetical axis of the injector. Consequently, we applied proper orthogonal decomposition (POD) to analyze the instantaneous liquid velocity data records in order to capture the dominant coherent structures potentially related to cavitation. It was found that the most energetic mode of the liquid flow field corresponded to the expected instantaneous swirling flow structure when bulk cavitation was present in the flow

    The {\alpha}-Decay Chains of the 287,288115^{287, 288}115 Isotopes using Relativistic Mean Field Theory

    Full text link
    We study the binding energy, root-mean-square radius and quadrupole deformation parameter for the synthesized superheavy element Z = 115, within the formalism of relativistic mean field theory. The calculation is dones for various isotopes of Z = 115 element, starting from A = 272 to A = 292. A systematic comparison between the binding energies and experimental data is made.The calculated binding energies are in good agreement with experimental result. The results show the prolate deformation for the ground state of these nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the isotopic chain. We have also studied Q{\alpha} and T{\alpha} for the {\alpha}-decay chains of 287,288^{287, 288}115.Comment: 12 Pages 6 Figures 3 Table

    ASSESSMENT OF HYDRO POTENTIAL USING INTEGRATED TOOL IN QGIS

    Get PDF
    The necessity for developing Hydropower plants a renewable energy source has emerged due to increase in energy demand and environmental concern, as non-renewable sources produce greenhouse gasses. Location analysis methodology for hydropower development has formerly depended upon onsite surveys and manual work which are tedious, time consuming and costly as compared to the work done on GIS environment. In current study an attempt has been made to construct a tool that integrate and automate the various hydrology tools available in QGIS for finding hydro potential site. Each tool perform different function and are linked according to the workflow as majority of these tools uses the output of the previous tool and thus are interdependent. Geoprocessing analysis is performed on DEM to generate fill sink, flow direction, flow accumulation, identification of stream network, head (falling height). Hydrological data (runoff) and Pour point location is taken as input to generate discharge value and watershed contributing to that point location respectively. Finally hydro potential is calculated by the tool and sites having high potential are identified. The model is tested on Hasdo bango hydro power plant site located in Korba district of Chhattisgarh. The hydro potential of the site evaluated from the model is 112 MW which is close to the total installed capacity of the existing hydro power plant of 120 MW

    High-velocity white dwarfs: thick disk, not dark matter

    Get PDF
    We present an alternative interpretation of the nature of the extremely cool, high-velocity white dwarfs identified by Oppenheimer et al (2001) in a high-latitude astrometric survey. We argue that the velocity distribution of the majority of the sample is more consistent with the high-velocity tail of a rotating population, probably the thick disk, rather than a pressure-supported halo system. Indeed, the observed numbers are well matched by predictions based on the kinematics of a complete sample of nearby M dwarfs. Analysing only stars showing retrograde motion gives a local density close to that expected for white dwarfs in the stellar (R^-3.5) halo. Under our interpretation, none of the white dwarfs need be assigned to the dark-matter, heavy halo. However, luminosity functions derived from observations of these stars can set important constraints on the age of the oldest stars in the Galactic Disk.Comment: 11 pages, 5 figures; accepted for ApJ, 29 May 200

    The D/H Ratio in Interstellar Gas Towards G191-B2B

    Full text link
    We reinvestigate the question of spatial variation of the local D/H abundance, using both archival GHRS spectra, and new echelle spectra of G191-B2B obtained with the Space Telescope Imaging Spectrograph (STIS) aboard HST. Our analysis uses stratified line-blanketed non-LTE model atmosphere calculations to determine the shape of the intrinsic WD Lyman-alpha profile and estimate the WD photospheric contamination of the interstellar lines. Although three velocity components were reported previously towards G191-B2B, we detect only two velocity components. The first component is at V(hel) ~ 8.6 km/s and the second at V(hel) ~ 19.3 km/s, which we identify with the Local Interstellar Cloud (LIC). From the STIS data we derive D/H = 1.60(+0.39,-0.27)X10^-5 for the LIC component, and D/H > 1.26X10^-5 for the 8.6 km/s component (uncertainties denote 2-sigma or 95% confidence limits). The STIS data provide no evidence for local or component-to-component variation in the D/H ratio. Despite using two velocity components for the profile fitting and using a more physically realistic WD Lyman-alpha profile for G191-B2B, our re-analysis of the GHRS data indicates a component-to-component variation as well as a variation of the D/H ratio in the LISM, neither of which are supported by the newer STIS data. We believe the most probable cause for this difference is the characterization of the background due to scattered light in the GHRS and STIS spectrographs. The two-dimensional MAMA detectors of STIS measure both the spatial and wavelength dependences of scattered light, allowing more accurate scattered light corrections than was possible with GHRS.Comment: Accepted for publication in Astrophysical Journal Letters. 10 pages + 3 figures. (Abstract is abridged.

    The galactic population of white dwarfs

    Get PDF
    Original paper can be found at: http://www.iop.org/EJ/conf DOI: 10.1088/1742-6596/172/1/012004 [16th European White Dwarfs Workshop]The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial– mass– function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the – often neglected – population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.Peer reviewe
    • …
    corecore