767 research outputs found

    Remarks on the Generalized Chaplygin Gas

    Get PDF
    We have developed an action formulation for the Generalized Chaplygin Gas (GCG). The most general form for the nonrelativistic GCG action is derived consistent with the equation of state. We have also discussed a relativistic formulation for GCG by providing a detailed analysis of the Poincare algebra.Comment: References addede

    A Comparison of the LVDP and {\Lambda}CDM Cosmological Models

    Full text link
    We compare the cosmological kinematics obtained via our law of linearly varying deceleration parameter (LVDP) with the kinematics obtained in the {\Lambda}CDM model. We show that the LVDP model is almost indistinguishable from the {\Lambda}CDM model up to the near future of our universe as far as the current observations are concerned, though their predictions differ tremendously into the far future.Comment: 6 pages, 5 figures, 1 table, matches the version to be published in International Journal of Theoretical Physic

    The Cosmological Constant as an Eigenvalue of a Sturm-Liouville Problem and its Renormalization

    Full text link
    We discuss the case of massive gravitons and their relation with the cosmological constant, considered as an eigenvalue of a Sturm-Liouville problem. A variational approach with Gaussian trial wave functionals is used as a method to study such a problem. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.Comment: 8 pages, Talk given at "QFEXT'05", the 7-th workshop on quantum field theory under the influence of external conditions, Barcelona, Spain, Sept. 5-9, 200

    Quintessence and cosmic acceleration

    Full text link
    A cosmological model with perfect fluid and self-interacting quintessence field is considered in the framework of the spatially flat Friedmann-Robertson-Walker (FRW) geometry. By assuming that all physical quantities depend on the volume scale factor of the Universe, the general solution of the gravitational field equations can be expressed in an exact parametric form. The quintessence field is a free parameter. With an appropriate choice of the scalar field a class of exact solutions is obtained, with an exponential type scalar field potential fixed via the gravitational field equations. The general physical behavior of the model is consistent with the recent cosmological scenario favored by supernova Type Ia observations, indicating an accelerated expansion of the Universe.Comment: 6 pages, 3 figures, to appear in Int. J. Mod. Phys.

    Linearized gravity on the Randall-Sundrum two-brane background with curvature terms in the action for the branes

    Full text link
    We study gravitational perturbations in the Randall-Sundrum two-brane background with scalar-curvature terms in the action for the branes, allowing for positive as well as negative bulk gravitational constant. In the zero-mode approximation, we derive the linearized gravitational equations, which have the same form as in the original Randall-Sundrum model but with different expressions for the effective physical constants. We develop a generic method for finding tachyonic modes in the theory, which, in the model under consideration, may exist only if the bulk gravitational constant is negative. In this case, if both brane gravitational constants are nonzero, the theory contains one or two tachyonic mass eigenvalues in the gravitational sector. If one of the brane gravitational constants is set to zero, then either a single tachyonic mass eigenvalue is present or tachyonic modes are totally absent depending on the relation between the nonzero brane gravitational constant and brane separation. In the case of negative bulk gravitational constant, the massive gravitational modes have ghost-like character, while the massless gravitational mode is not a ghost in the case where tachyons are absent.Comment: 23 pages, revtex, published versio

    A Case of Pneumomediastinum and Pneumoperitoneum with Concurrent Massive Subcutaneous Emphysema due to Repositioning of a Tracheostomy Tube.

    Get PDF
    Tracheostomy is a common procedure seen in critically ill patients that require long term ventilatory support. As with all airway access procedures, tracheotomy with prolonged tracheal tube placement comes with possible risks such as tracheal scarring, tracheal rupture, pneumothorax, tracheoesophageal fistula among others. Another possible complication, though rare, is escape of free air into the surrounding tissue, as well as pneumomediastinum (PM). This may occur due to various reasons, some of them being tracheal rupture, barotrauma or tracheal tube mispositioning. Pneumomediastinum may present with concurrent free air in other body cavities such as the peritoneum, thorax or subcutaneous tissue. Though often not life-threatening it may require treatment including high flow oxygen, ventilator management or occasionally, surgical intervention. Herein we describe a rare case of PM with communicating pneumoperitoneum and massive subcutaneous emphysema due to tracheal tube mispositioning along with a review of the literature

    Acute Kidney Injury Caused by Levetiracetam in a Patient With Status Epilepticus

    Get PDF
    Levetiracetam is a widely used, effective and usually well-tolerated anti-epileptic medicine. It is mostly excreted by kidneys and requires dose adjustment according to the glomerular filtration rate. Very few case reports have been published in the literature about levetiracetam causing acute kidney injury (AKI). We present a case of a 26-year-old male with a seizure disorder on levetiracetam, presented with status epilepticus requiring intubation for airway protection. He received 4 g of intravenous levetiracetam as a loading dose and continued with a maintenance dose of 750 mg intravenous every 12 hours. He had signs of AKI on day two and creatinine eventually reached a maximum level of 12.2 mg/dL. His kidney function improved to his new baseline in a period of 30 days without requiring renal replacement therapy. He did not have significant rhabdomyolysis and his kidney function started improving right after his anti-epileptic therapy was switched to valproic acid pointing towards levetiracetam as the primary cause of kidney injury. Clinicians should be aware that levetiracetam can cause AKI on patients with a seizure disorder, especially when administered in high doses. Kidney function should be monitored closely and patients should be treated aggressively with intravenous fluids when they have any signs of rhabdomyolysis to prevent further kidney damage

    Quantum backreaction of massive fields and self-consistent semiclassical extreme black holes and acceleration horizons

    Get PDF
    We consider the effect of backreaction of quantized massive fields on the metric of extreme black holes (EBH). We find the analytical approximate expression for the stress-energy tensor for a scalar (with an arbitrary coupling), spinor and vector fields near an event horizon. We show that, independent of a concrete type of EBH, the energy measured by a freely falling observer is finite on the horizon, so that quantum backreaction is consistent with the existence of EBH. For the Reissner-Nordstrom EBH with a total mass M_{tot} and charge Q we show that for all cases of physical interest M_{tot}< Q. We also discuss different types of quantum-corrected Bertotti-Robinson spacetimes, find for them exact self-consistent solutions and consider situations in which tiny quantum corrections lead to the qualitative change of the classical geometry and topology. In all cases one should start not from a classical background with further adding quantum corrections but from the quantum-corrected self-consistent geometries from the very beginning.Comment: Minor corrections. To appear in Phys. Rev.

    Dynamics of Quintessence Models of Dark Energy with Exponential Coupling to the Dark Matter

    Get PDF
    We explore quintessence models of dark energy which exhibit non-minimal coupling between the dark matter and the dark energy components of the cosmic fluid. The kind of coupling chosen is inspired in scalar-tensor theories of gravity. We impose a suitable dynamics of the expansion allowing to derive exact Friedmann-Robertson-Walker solutions once the coupling function is given as input. Self-interaction potentials of single and double exponential types emerge as result of our choice of the coupling function. The stability and existence of the solutions is discussed in some detail. Although, in general, models with appropriated interaction between the components of the cosmic mixture are useful to handle the coincidence problem, in the present study the coincidence can not be evaded due to the choice of the solution generating ansatz.Comment: 10 pages, 7 figure

    More on QCD Ghost Dark Energy

    Full text link
    The difference between vacuum energy of quantum fields in Minkowski space and in Friedmann-Robterson-Walker universe might be related to the observed dark energy. The vacuum energy of the Veneziano ghost field introduced to solve the U(1)AU(1)_A problem in QCD is of the form, H+O(H2) H+ {\cal O}(H^2). Based on this, we study the dynamical evolution of a phenomenological dark energy model whose energy density is of the form αH+βH2\alpha H+\beta H^2. In this model, the universe approaches to a de Sitter phase at late times. We fit the model with current observational data including SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation. It shows that the universe begins to accelerate at redshift z∼0.75z\sim 0.75 and this model is consistent with current data. In particular, this model fits the data of growth factor well as the ΛCDM\Lambda CDM model.Comment: 14 pages, 4 figures, 2 table
    • …
    corecore