5 research outputs found

    An Eclipsing 47 minute Double White Dwarf Binary at 400 pc

    Get PDF
    We present the discovery of the eclipsing double white dwarf (WD) binary WDJ 022558.21-692025.38 that has an orbital period of 47.19 min. Following identification with the Transiting Exoplanet Survey Satellite, we obtained time-series ground based spectroscopy and high-speed multi-band ULTRACAM photometry which indicate a primary DA WD of mass 0.40 +- 0.04 Msol and a 0.28 +- 0.02 Msol mass secondary WD, which is likely of type DA as well. The system becomes the third-closest eclipsing double WD binary discovered with a distance of approximately 400 pc and will be a detectable source for upcoming gravitational wave detectors in the mHz frequency range. Its orbital decay will be measurable photometrically within 10 yrs to a precision of better than 1%. The fate of the binary is to merge in approximately 41 Myr, likely forming a single, more massive WD.Comment: Accepted for publication in MNRAS, 8 pages + 2 appendix pages, 6 figure

    A rotating white dwarf shows different compositions on its opposite faces

    Get PDF
    White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterised by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink toward the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor ~2.5 below a temperature of about 30,000 K; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 K are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is likely caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs -- together with GD 323, a white dwarf that shows similar but much more subtle variations. This new class could help shed light on the physical mechanisms behind white dwarf spectral evolution.Comment: 45 pages, 11 figure

    An eclipsing 47 minute double white dwarf binary at 400 pc

    Get PDF
    We present the discovery of the eclipsing double white dwarf (WD) binary WDJ 022558.21-692025.38 that has an orbital period of 47.19 min. Following identification with the Transiting Exoplanet Survey Satellite, we obtained time-series ground based spectroscopy and high-speed multi-band ULTRACAM photometry which indicate a primary DA WD of mass 0.40 +- 0.04 Msol and a 0.28 +- 0.02 Msol mass secondary WD, which is likely of type DA as well. The system becomes the third-closest eclipsing double WD binary discovered with a distance of approximately 400 pc and will be a detectable source for upcoming gravitational wave detectors in the mHz frequency range. Its orbital decay will be measurable photometrically within 10 yrs to a precision of better than 1%. The fate of the binary is to merge in approximately 41 Myr, likely forming a single, more massive WD

    Two decades of optical timing of the shortest-period binary star system HM Cancri

    No full text
    The shortest-period binary star system known to date, RX J0806.3+1527 (HM Cancri), has now been observed in the optical for more than two decades. Although it is thought to be a double degenerate binary undergoing mass transfer, an early surprise was that its orbital frequency, f0, is currently increasing as the result of gravitational wave radiation. This is unusual since it was expected that the mass donor was degenerate and would expand on mass loss, leading to a decreasing f0. We exploit two decades of high-speed photometry to precisely quantify the trajectory of HM Cancri, allowing us to find that f¨0\ddot{f}_0 is negative, where f¨0 = (−5.38±2.10)×10−27\ddot{f}_0~=~(-5.38\pm 2.10)\times 10^{-27} Hz s−2. Coupled with our positive frequency derivative, we show that mass transfer is counteracting gravitational-wave dominated orbital decay and that HM Cnc will turn around within 2100 ± 800 yrs from now. We present Hubble Space Telescope ultra-violet spectra which display Lyman-α absorption, indicative of the presence of hydrogen accreted from the donor star. We use these pieces of information to explore a grid of permitted donor and accretor masses with the Modules for Experiments in Stellar Astrophysics suite, finding models in good accordance with many of the observed properties for a cool and initially hydrogen-rich extremely-low-mass white dwarf (≈0.17 M⊙) coupled with a high accretor mass white dwarf (≈1.0 M⊙). Our measurements and models affirm that HM Cancri is still one of the brightest verification binaries for the Laser Interferometer Space Antenna spacecraft

    JWST detection of heavy neutron capture elements in a compact object merger

    No full text
    The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, biological and cultural importance, such as thorium, iodine, and gold. Here we present observations of the exceptionally bright gamma-ray burst GRB230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW170817. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 & 61 days after the burst. The spectroscopy shows an emission line at 2.1 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe
    corecore