577 research outputs found

    Gaia and VLT astrometry of faint stars: Precision of Gaia DR1 positions and updated VLT parallaxes of ultracool dwarfs

    Full text link
    We compared positions of the Gaia first data release (DR1) secondary data set at its faint limit with CCD positions of stars in 20 fields observed with the VLT/FORS2 camera. The FORS2 position uncertainties are smaller than one milli-arcsecond (mas) and allowed us to perform an independent verification of the DR1 astrometric precision. In the fields that we observed with FORS2, we projected the Gaia DR1 positions into the CCD plane, performed a polynomial fit between the two sets of matching stars, and carried out statistical analyses of the residuals in positions. The residual RMS roughly matches the expectations given by the Gaia DR1 uncertainties, where we identified three regimes in terms of Gaia DR1 precision: for G = 17-20 stars we found that the formal DR1 position uncertainties of stars with DR1 precisions in the range of 0.5-5 mas are underestimated by 63 +/- 5\%, whereas the DR1 uncertainties of stars in the range 7-10 mas are overestimated by a factor of two. For the best-measured and generally brighter G = 16-18 stars with DR1 positional uncertainties of <0.5 mas, we detected 0.44 +/- 0.13 mas excess noise in the residual RMS, whose origin can be in both FORS2 and Gaia DR1. By adopting Gaia DR1 as the absolute reference frame we refined the pixel scale determination of FORS2, leading to minor updates to the parallaxes of 20 ultracool dwarfs that we published previously. We also updated the FORS2 absolute parallax of the Luhman 16 binary brown dwarf system to 501.42 +/- 0.11 masComment: 7 pages, 4 figures, 2 tables, accepted for publication in A&A on August 1, 201

    Astrometric mass ratios for three spectroscopic binaries

    Get PDF
    The orbits of five single-lined spectroscopic binaries have recently been determined. We now use astrometric measurements that were collected with the Hipparcos satellite to constrain the systems' mass ratios and secondary masses. The barycentric astrometric orbits of three binary systems, HD 140667, HD 158222, and HD 217924, are fully determined and precise estimates of their mass ratios are obtained. Follow-up of these systems with infrared spectroscopy could yield model-independent dynamical masses for all components.Comment: 4 pages, 4 figures. Research note accepted for publication in Astronomy and Astrophysic

    When Do Measures on the Space of Connections Support the Triad Operators of Loop Quantum Gravity?

    Full text link
    In this work we investigate the question, under what conditions Hilbert spaces that are induced by measures on the space of generalized connections carry a representation of certain non-Abelian analogues of the electric flux. We give the problem a precise mathematical formulation and start its investigation. For the technically simple case of U(1) as gauge group, we establish a number of "no-go theorems" asserting that for certain classes of measures, the flux operators can not be represented on the corresponding Hilbert spaces. The flux-observables we consider play an important role in loop quantum gravity since they can be defined without recourse to a background geometry, and they might also be of interest in the general context of quantization of non-Abelian gauge theories.Comment: LaTeX, 21 pages, 5 figures; v3: some typos and formulations corrected, some clarifications added, bibliography updated; article is now identical to published versio

    Astrometric detection of exoplanets from the ground

    Full text link
    Astrometry is a powerful technique to study the populations of extrasolar planets around nearby stars. It gives access to a unique parameter space and is therefore required for obtaining a comprehensive picture of the properties, abundances, and architectures of exoplanetary systems. In this review, we discuss the scientific potential, present the available techniques and instruments, and highlight a few results of astrometric planet searches, with an emphasis on observations from the ground. In particular, we discuss astrometric observations with the Very Large Telescope (VLT) Interferometer and a programme employing optical imaging with a VLT camera, both aimed at the astrometric detection of exoplanets. Finally, we set these efforts into the context of Gaia, ESA's astrometry mission scheduled for launch in 2013, and present an outlook on the future of astrometric exoplanet detection from the ground.Comment: 9 pages, 3 figures. Invited contribution to the SPIE conference "Techniques and Instrumentation for Detection of Exoplanets VI" held in San Diego, CA, August 25-29, 201

    Background independent quantizations: the scalar field I

    Full text link
    We are concerned with the issue of quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in Loop Quantum Gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the `quantum' polymer *-star algebra and looking for positive linear functionals, called states. The assumed in our paper homeomorphism invariance allows to determine a complete class of the states. Except one, all of them are new. In this letter we outline the main steps and conclusions, and present the results: the GNS representations, characterization of those states which lead to essentially self adjoint momentum operators (unbounded), identification of the equivalence classes of the representations as well as of the irreducible ones. The algebra and topology of the problem, the derivation, all the technical details and more are contained in the paper-part II.Comment: 13 pages, minor corrections were made in the revised versio

    Enabling science with Gaia observations of naked-eye stars

    Get PDF
    ESA's Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G~6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed.Comment: 16 pages, 8 figures. Submitted for the proceedings of the 2016 SPIE Astronomical Instrumentation and Telescopes conference (SPIE 9904

    Polymer and Fock representations for a Scalar field

    Get PDF
    In loop quantum gravity, matter fields can have support only on the `polymer-like' excitations of quantum geometry, and their algebras of observables and Hilbert spaces of states can not refer to a classical, background geometry. Therefore, to adequately handle the matter sector, one has to address two issues already at the kinematic level. First, one has to construct the appropriate background independent operator algebras and Hilbert spaces. Second, to make contact with low energy physics, one has to relate this `polymer description' of matter fields to the standard Fock description in Minkowski space. While this task has been completed for gauge fields, important gaps remained in the treatment of scalar fields. The purpose of this letter is to fill these gaps.Comment: 13 pages, no figure

    Automorphism covariant representations of the holonomy-flux *-algebra

    Full text link
    We continue an analysis of representations of cylindrical functions and fluxes which are commonly used as elementary variables of Loop Quantum Gravity. We consider an arbitrary principal bundle of a compact connected structure group and following Sahlmann's ideas define a holonomy-flux *-algebra whose elements correspond to the elementary variables. There exists a natural action of automorphisms of the bundle on the algebra; the action generalizes the action of analytic diffeomorphisms and gauge transformations on the algebra considered in earlier works. We define the automorphism covariance of a *-representation of the algebra on a Hilbert space and prove that the only Hilbert space admitting such a representation is a direct sum of spaces L^2 given by a unique measure on the space of generalized connections. This result is a generalization of our previous work (Class. Quantum. Grav. 20 (2003) 3543-3567, gr-qc/0302059) where we assumed that the principal bundle is trivial, and its base manifold is R^d.Comment: 34 pages, 1 figure, LaTeX2e, minor clarifying remark

    Testing the Master Constraint Programme for Loop Quantum Gravity IV. Free Field Theories

    Full text link
    This is the fourth paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. We now move on to free field theories with constraints, namely Maxwell theory and linearized gravity. Since the Master constraint involves squares of constraint operator valued distributions, one has to be very careful in doing that and we will see that the full flexibility of the Master Constraint Programme must be exploited in order to arrive at sensible results.Comment: 23 pages, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    Full text link
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order 2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to \hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.Comment: 33 pages, no figure
    corecore