6 research outputs found

    Anticancer activity of novel surface functionalized metal doped hydroxyapatite

    No full text
    In this manuscript it has been described a novel synthesis of mercury doped hydroxyapatite (Hap) and its application on human liver carcinoma cell line (Hep G2) and human lung fibroblast carcinoma cell line (MRC 5). Nano-sized hydroxyapatite doped with Hg2+ was synthesized by a solution based chemical method along with mercury ion. The surface of nanoparticle of mercury doped hydroxyapatite (MHAp) was functionalized by using phosphonomethyl iminodiacetic acid (PMIDA) for making it stable as dispersed phase with negative zeta potential. Surface functionalization was confirmed by FTIR measurements. Crystalline nature, morphology and surface topology were studied by powder XRD, FESEM and AFM measurements. Particle size of the well dispersed sample was obtained by HRTEM image. The studies on cell viability of Hep G2 and MRC 5 cell in presence of mercury doped HAp nanoparticle (MHAp) were determined through WST assay. It was observed that nanocomposite exhibited a site specific action towards MRC 5 cell lines along with reduction of toxicity toward normal cells

    Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum

    No full text
    Surface-modified sulfur nanoparticles (SNPs) of two different sizes were prepared via a modified liquid-phase precipitation method, using sodium polysulfide and ammonium polysulfide as starting material and polyethylene glycol-400 (PEG-400) as the surface stabilizing agent. Surface topology, size distribution, surface modification of SNPs with PEG-400, quantitative analysis for the presence of sulfur in nanoformulations, and thermal stability of SNPs were determined by atomic force microscopy (AFM), dynamic light scattering (DLS) plus high-resolution transmission electron microscopy (HR-TEM), fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA), respectively. A simultaneous study with micron-sized sulfur (S<SUP>0</SUP>) and SNPs was carried out to evaluate their fungicidal efficacy against Aspergillus niger and Fusarium oxysporum in terms of radial growth, sporulation, ultrastructural modifications, and phospholipid content of the fungal strains using a modified poisoned food technique, spore-germination slide bioassay, environmental scanning electron microscopy (ESEM), and spectrometry. SNPs expressed promising inhibitory effect on fungal growth and sporulation and also significantly reduced phospholipid content

    Copper Nanoparticle (CuNP) Nanochain Arrays with a Reduced Toxicity Response: A Biophysical and Biochemical Outlook on Vigna radiata

    No full text
    Copper deficiency or toxicity in agricultural soil circumscribes a plant’s growth and physiology, hampering photochemical and biochemical networks within the system. So far, copper sulfate (CS) has been used widely despite its toxic effect. To get around this long-standing problem, copper nanoparticles (CuNPs) have been synthesized, characterized, and tested on mung bean plants along with commercially available salt CS, to observe morphological abnormalities enforced if any. CuNPs enhanced photosynthetic activity by modulating fluorescence emission, photophosphorylation, electron transport chain (ETC), and carbon assimilatory pathway under controlled laboratory conditions, as revealed from biochemical and biophysical studies on treated isolated mung bean chloroplast. CuNPs at the recommended dose worked better than CS in plants in terms of basic morphology, pigment contents, and antioxidative activities. CuNPs showed elevated nitrogen assimilation compared to CS. At higher doses CS was found to be toxic to the plant system, whereas CuNP did not impart any toxicity to the system including morphological and/or physiological alterations. This newly synthesized polymer-encapsulated CuNPs can be utilized as nutritional amendment to balance the nutritional disparity enforced by copper imbalance

    Manganese Nanoparticles: Impact on Non-nodulated Plant as a Potent Enhancer in Nitrogen Metabolism and Toxicity Study both in Vivo and in Vitro

    No full text
    Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II–III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management
    corecore