17 research outputs found

    Robust wireless sensor network for smart grid communication : modeling and performance evaluation

    Get PDF
    Our planet is gradually heading towards an energy famine due to growing population and industrialization. Hence, increasing electricity consumption and prices, diminishing fossil fuels and lack significantly in environment-friendliness due to their emission of greenhouse gasses, and inefficient usage of existing energy supplies have caused serious network congestion problems in many countries in recent years. In addition to this overstressed situation, nowadays, the electric power system is facing many challenges, such as high maintenance cost, aging equipment, lack of effective fault diagnostics, power supply reliability, etc., which further increase the possibility of system breakdown. Furthermore, the adaptation of the new renewable energy sources with the existing power plants to provide an alternative way for electricity production transformed it in a very large and complex scale, which increases new issues. To address these challenges, a new concept of next generation electric power system, called the "smart grid", has emerged in which Information and Communication Technologies (ICTs) are playing the key role. For a reliable smart grid, monitoring and control of power system parameters in the transmission and distribution segments are crucial. This necessitates the deployment of a robust communication network within the power grid. Traditionally, power grid communications are realized through wired communications, including power line communication (PLC). However, the cost of its installation might be expensive especially for remote control and monitoring applications. More recently, plenty of research interests have been drawn to the wireless communications for smart grid applications. In this regard, the most promising methods of smart grid monitoring explored in the literature is based on wireless sensor network (WSN). Indeed, the collaborative nature of WSN brings significant advantages over the traditional wireless networks, including low-cost, wider coverage, self-organization, and rapid deployment. Unfortunately, harsh and hostile electric power system environments pose great challenges in the reliability of sensor node communications because of strong RF interference and noise called impulsive noise. On account of the fundamental of WSN-based smart grid communications and the possible impacts of impulsive noise on the reliability of sensor node communications, this dissertation is supposed to further fill the lacking of the existing research outcomes. To be specific, the contributions of this dissertation can be summarized as three fold: (i) investigation and performance analysis of impulsive noise mitigation techniques for point-to-point single-carrier communication systems impaired by bursty impulsive noise; (ii) design and performance analysis of collaborative WSN for smart grid communication by considering the RF noise model in the designing process, a particular intension is given to how the time-correlation among the noise samples can be taken into account; (iii) optimal minimum mean square error (MMSE)estimation of physical phenomenon like temperature, current, voltage, etc., typically modeled by a Gaussian source in the presence of impulsive noise. In the first part, we compare and analyze the widely used non-linear methods such as clipping, blanking, and combined clipping-blanking to mitigate the noxious effects of bursty impulsive noise for point-to-point communication systems with low-density parity-check (LDPC) coded single-carrier transmission. While, the performance of these mitigation techniques are widely investigated for multi-carrier communication systems using orthogonal frequency division multiplexing (OFDM) transmission under the effect of memoryless impulsive noise, we note that OFDM is outperformed by its single-carrier counterpart when the impulses are very strong and/or they occur frequently, which likely exists in contemporary communication systems including smart grid communications. Likewise, the assumption of memoryless noise model is not valid for many communication scenarios. Moreover, we propose log-likelihood ratio (LLR)-based impulsive noise mitigation for the considered scenario. We show that the memory property of the noise can be exploited in the LLR calculation through maximum a posteriori (MAP) detection. In this context, provided simulation results highlight the superiority of the LLR-based mitigation scheme over the simple clipping/blanking schemes. The second contribution can be divided into two aspects: (i) we consider the performance analysis of a single-relay decode-and-forward (DF) cooperative relaying scheme over channels impaired by bursty impulsive noise. For this channel, the bit error rate (BER) performances of direct transmission and a DF relaying scheme using M-PSK modulation in the presence of Rayleigh fading with a MAP receiver are derived; (ii) as a continuation of single-relay collaborative WSN scheme, we propose a novel relay selection protocol for a multi-relay DF collaborative WSN taking into account the bursty impulsive noise. The proposed protocol chooses the N’th best relay considering both the channel gains and the states of the impulsive noise of the source-relay and relay-destination links. To analyze the performance of the proposed protocol, we first derive closed-form expressions for the probability density function (PDF) of the received SNR. Then, these PDFs are used to derive closed-form expressions for the BER and the outage probability. Finally, we also derive the asymptotic BER and outage expressions to quantify the diversity benefits. From the obtained results, it is seen that the proposed receivers based on the MAP detection criterion is the most suitable one for bursty impulsive noise environments as it has been designed according to the statistical behavior of the noise. Different from the aforementioned contributions, talked about the reliable detection of finite alphabets in the presence of bursty impulsive noise, in the thrid part, we investigate the optimal MMSE estimation for a scalar Gaussian source impaired by impulsive noise. In Chapter 5, the MMSE optimal Bayesian estimation for a scalar Gaussian source, in the presence of bursty impulsive noise is considered. On the other hand, in Chapter 6, we investigate the distributed estimation of a scalar Gaussian source in WSNs in the presence of Middleton class-A noise. From the obtained results we conclude that the proposed optimal MMSE estimator outperforms the linear MMSE estimator developed for Gaussian channel

    ANALYSIS OF SECURITY THREATS IN WIRELESS SENSOR NETWORK

    Get PDF
    ABSTRAC

    Reinforcement Learning-based Relay Selection for Cooperative WSNs in the Presence of Bursty Impulsive Noise

    Full text link
    The problem of relay selection is pivotal in the realm of cooperative communication. However, this issue has not been thoroughly examined, particularly when the background noise is assumed to possess an impulsive characteristic with consistent memory as observed in smart grid communications and some other wireless communication scenarios. In this paper, we investigate the impact of this specific type of noise on the performance of cooperative Wireless Sensor Networks (WSNs) with the Decode and Forward (DF) relaying scheme, considering Symbol-Error-Rate (SER) and battery power consumption fairness across all nodes as the performance metrics. We introduce two innovative relay selection methods that depend on noise state detection and the residual battery power of each relay. The first method encompasses the adaptation of the Max-Min criterion to this specific context, whereas the second employs Reinforcement Learning (RL) to surmount this challenge. Our empirical outcomes demonstrate that the impacts of bursty impulsive noise on the SER performance can be effectively mitigated and that a balance in battery power consumption among all nodes can be established using the proposed methods.Comment: Accepted in 2024 IEEE Wireless Communications and Networking Conferenc

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Fuzzy based trusted malicious unmanned aerial vehicle detection using in flying ad-hoc network

    No full text
    The communication security of unmanned aerial vehicles (UAVs) or drones based on flying ad hoc networks (FANETs) can be enhanced and maintained by assessing vulnerabilities, threats, and attacks. Thus, trust, high mobility, and complex communication interfaces are crucial for effective coordination and segregation of malicious drones from the genuine. A new efficient honesty-based detection scheme for malicious drones has been proposed to distinguish between intentional and unintentional misbehavior of the UAVs. The proposed scheme configures a drone system for packet transmission within the FANET, specifying buffer size and packet size variables to control data flow and prevent congestion. It then computes energy used for packet reception and transmission, optimizes energy consumption, and evaluates the drone’s mobility through the link stability index (LSI) and honesty UAV. The honesty UAV parameter categorizes UAVs into unintentional malicious and intentional malicious categories. Fuzzy logic helps identify intentional and unintentional misbehaving drones and improves performance in the network. It continuously generates the malicious UAV detection mechanism by assessing the parameters i.e., energy, pattern of movements, and the honesty score about the UAVs as a whole. Thereby a dynamic rating system to adeptly identify and differentiate the cooperative and non-cooperative nature of drones from the network is assimilated in the paper. Simulation results show the proposed scheme approximately aligns with the actual cases for varying numbers of malicious drones. Finally, the observation of the simulation result reflects substantial enhancement in performance metrics, with a significant cutback in end to end delay and packet delivery ratio by 10–30% and 20–50% respectively, contrasting with the existing techniques

    Bayesian MMSE Estimation of a Gaussian Source in the Presence of Bursty Impulsive Noise

    No full text
    corecore