17,839 research outputs found
Nonlinear Spinor Fields and its role in Cosmology
Different characteristic of matter influencing the evolution of the Universe
has been simulated by means of a nonlinear spinor field. Exploiting the spinor
description of perfect fluid and dark energy evolution of the Universe given by
an anisotropic Bianchi type-VI, VI, V, III, I or isotropic
Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to
some restrictions on metric functions, initial anisotropy in the models Bianchi
type-VI, VI, V and III does not die away, while the anisotropic Bianchi
type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure
Interacting spinor and scalar fields in Bianchi type-I Universe filled with viscous fluid: exact and numerical solutions
We consider a self-consistent system of spinor and scalar fields within the
framework of a Bianchi type I gravitational field filled with viscous fluid in
presence of a term. Exact self-consistent solutions to the
corresponding spinor, scalar and BI gravitational field equations are obtained
in terms of , where is the volume scale of BI universe. System of
equations for and \ve, where \ve is the energy of the viscous fluid,
is deduced. Some special cases allowing exact solutions are thoroughly studied.Comment: 18 pages, 6 figure
Nonlinear spinor field in Bianchi type-I Universe filled with viscous fluid: numerical solutions
We consider a system of nonlinear spinor and a Bianchi type I gravitational
fields in presence of viscous fluid. The nonlinear term in the spinor field
Lagrangian is chosen to be , with being a self-coupling
constant and being a function of the invariants an constructed from
bilinear spinor forms and . Self-consistent solutions to the spinor and
BI gravitational field equations are obtained in terms of , where
is the volume scale of BI universe. System of equations for and \ve,
where \ve is the energy of the viscous fluid, is deduced. This system is
solved numerically for some special cases.Comment: 15 pages, 4 figure
Probability for Primordial Black Holes in Multidimensional Universe with Nonlinear Scalar Curvature Terms
We investigate multi-dimensional universe with nonlinear scalar curvature
terms to evaluate the probability of creation of primordial black holes. For
this we obtain Euclidean instanton solution in two different topologies: (a)
- topology which does not accommodate primordial black holes and (b)
-topology which accommodates a pair of black holes. The
probability for quantum creation of an inflationary universe with a pair of
black holes has been evaluated assuming a gravitational action which is
described by a polynomial function of scalar curvature with or without a
cosmological constant () using the framework of semiclassical
approximation of Hartle-Hawking boundary conditions. We discuss here a class of
new gravitational instantons solution in the -theory which are relevant
for cosmological model building.Comment: 18 pages, no figure. accepted in Phys. Rev.
Probability for Primordial Black Holes in Higher Derivative Theories
The probability for quantum creation of an inflationary universe with a pair
of black holes in higher derivative theories has been studied. Considering a
gravitational action which includes quadratic () and/or cubic
term () in scalar curvature in addition to a cosmological constant
() in semiclassical approximation with Hartle-Hawking boundary
condition, the probability has been evaluated. The action of the instanton
responsible for creating such a universe, with spatial section with
topology, is found to be less than that with a spatial
topology, unless in -theory. In the
theory, however, there exists a set of solutions without a cosmological
constant when and which admit
primordial black holes (PBH) pair in an inflationary universe scenario. We note
further that when , one gets PBH pairs in the two cases :
(i) with and both positive and (ii) with positive
and negative satisfying a constraint .
However, the relative probability for creation of an inflationary universe with
a pair of black holes in the -theory suppresses when or . However, if the above
constraints are relaxed one derives interesting results leading to a universe
with PBH in -theory without cosmological constant. PACS No(s). :
04.20.Jb, 04.60.+n, 98.80.HwComment: 15 pages, No figures. accepted in Int. J. Mod. Phys. D (2001
Bianchi type-I model with cosmic string in the presence of a magnetic field: spinor description
A Bianchi type-I cosmological model in the presence of a magnetic flux along
a cosmic string is investigated. A nonlinear spinor field is used to simulate
the cosmological cloud of strings. It is shown that the spinor field simulation
offer the possibility to solve the system of Einstein's equation without any
additional assumptions. It is shown that the present model is nonsingular at
the end of the evolution and does not allow the anisotropic Universe to turn
into an isotropic one.Comment: 14 pages, 4 figures, new figus are added, singularity and
isotropization process are discussed in detai
Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms
We study spinor field theories as an origin to induce space-time evolution.
Self-interacting spinor fields with canonical and non-canonical kinetic terms
are considered in a Friedman-Robertson-Walker universe. The deceleration
parameter is calculated by solving the equation of motion and the Friedman
equation, simultaneously. It is shown that the spinor fields can accelerate and
decelerate the universe expansion. To construct realistic models we discuss the
contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure
Scalar field in cosmology: Potential for isotropization and inflation
The important role of scalar field in cosmology was noticed by a number of
authors. Due to the fact that the scalar field possesses zero spin, it was
basically considered in isotropic cosmological models. If considered in an
anisotropic model, the linear scalar field does not lead to isotropization of
expansion process. One needs to introduce scalar field with nonlinear potential
for the isotropization process to take place. In this paper the general form of
scalar field potentials leading to the asymptotic isotropization in case of
Bianchi type-I cosmological model, and inflationary regime in case of isotropic
space-time is obtained. In doing so we solved both direct and inverse problem,
where by direct problem we mean to find metric functions and scalar field for
the given potential, whereas, the inverse problem means to find the potential
and scalar field for the given metric function. The scalar field potentials
leading to the inflation and isotropization were found both for harmonic and
proper synchronic time.Comment: 10 page
- …