16,254 research outputs found

    Nonlinear Spinor Fields and its role in Cosmology

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-VI, VI0_0, V, III, I or isotropic Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to some restrictions on metric functions, initial anisotropy in the models Bianchi type-VI, VI0_0, V and III does not die away, while the anisotropic Bianchi type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure

    Interacting spinor and scalar fields in Bianchi type-I Universe filled with viscous fluid: exact and numerical solutions

    Full text link
    We consider a self-consistent system of spinor and scalar fields within the framework of a Bianchi type I gravitational field filled with viscous fluid in presence of a Λ\Lambda term. Exact self-consistent solutions to the corresponding spinor, scalar and BI gravitational field equations are obtained in terms of τ\tau, where τ\tau is the volume scale of BI universe. System of equations for τ\tau and \ve, where \ve is the energy of the viscous fluid, is deduced. Some special cases allowing exact solutions are thoroughly studied.Comment: 18 pages, 6 figure

    Nonlinear spinor field in Bianchi type-I Universe filled with viscous fluid: numerical solutions

    Full text link
    We consider a system of nonlinear spinor and a Bianchi type I gravitational fields in presence of viscous fluid. The nonlinear term in the spinor field Lagrangian is chosen to be λF\lambda F, with λ\lambda being a self-coupling constant and FF being a function of the invariants II an JJ constructed from bilinear spinor forms SS and PP. Self-consistent solutions to the spinor and BI gravitational field equations are obtained in terms of τ\tau, where τ\tau is the volume scale of BI universe. System of equations for τ\tau and \ve, where \ve is the energy of the viscous fluid, is deduced. This system is solved numerically for some special cases.Comment: 15 pages, 4 figure

    Probability for Primordial Black Holes in Multidimensional Universe with Nonlinear Scalar Curvature Terms

    Full text link
    We investigate multi-dimensional universe with nonlinear scalar curvature terms to evaluate the probability of creation of primordial black holes. For this we obtain Euclidean instanton solution in two different topologies: (a) SD1S^{D-1} - topology which does not accommodate primordial black holes and (b) S1×SD2S^1\times S^{D-2}-topology which accommodates a pair of black holes. The probability for quantum creation of an inflationary universe with a pair of black holes has been evaluated assuming a gravitational action which is described by a polynomial function of scalar curvature with or without a cosmological constant (Λ\Lambda ) using the framework of semiclassical approximation of Hartle-Hawking boundary conditions. We discuss here a class of new gravitational instantons solution in the R4R^4-theory which are relevant for cosmological model building.Comment: 18 pages, no figure. accepted in Phys. Rev.

    Probability for Primordial Black Holes in Higher Derivative Theories

    Get PDF
    The probability for quantum creation of an inflationary universe with a pair of black holes in higher derivative theories has been studied. Considering a gravitational action which includes quadratic (αR2\alpha R^{2}) and/or cubic term (βR3\beta R^{3}) in scalar curvature in addition to a cosmological constant (Λ\Lambda) in semiclassical approximation with Hartle-Hawking boundary condition, the probability has been evaluated. The action of the instanton responsible for creating such a universe, with spatial section with S1XS2S^{1}XS^{2} topology, is found to be less than that with a spatial S3S^{3} topology, unless α<18Λ\alpha < - \frac{1}{8 \Lambda} in R2R^{2}-theory. In the R3R^{3} theory, however, there exists a set of solutions without a cosmological constant when βR2=1\beta R^{2} = 1 and α=3β\alpha = - 3 \sqrt{\beta} which admit primordial black holes (PBH) pair in an inflationary universe scenario. We note further that when βR21\beta R^{2} \neq 1, one gets PBH pairs in the two cases : (i) with α\alpha and Λ\Lambda both positive and (ii) with Λ\Lambda positive and α\alpha negative satisfying a constraint 6αΛ>16 | \alpha | \Lambda > 1. However, the relative probability for creation of an inflationary universe with a pair of black holes in the R3R^{3}-theory suppresses when α>2β\alpha > - 2 \sqrt{\beta} or α<2β|\alpha| < 2 \sqrt{\beta} . However, if the above constraints are relaxed one derives interesting results leading to a universe with PBH in R3R^{3}-theory without cosmological constant. PACS No(s). : 04.20.Jb, 04.60.+n, 98.80.HwComment: 15 pages, No figures. accepted in Int. J. Mod. Phys. D (2001

    Bianchi type-I model with cosmic string in the presence of a magnetic field: spinor description

    Full text link
    A Bianchi type-I cosmological model in the presence of a magnetic flux along a cosmic string is investigated. A nonlinear spinor field is used to simulate the cosmological cloud of strings. It is shown that the spinor field simulation offer the possibility to solve the system of Einstein's equation without any additional assumptions. It is shown that the present model is nonsingular at the end of the evolution and does not allow the anisotropic Universe to turn into an isotropic one.Comment: 14 pages, 4 figures, new figus are added, singularity and isotropization process are discussed in detai

    Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

    Full text link
    We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman-Robertson-Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.Comment: 16 pages, 19 figure

    Scalar field in cosmology: Potential for isotropization and inflation

    Full text link
    The important role of scalar field in cosmology was noticed by a number of authors. Due to the fact that the scalar field possesses zero spin, it was basically considered in isotropic cosmological models. If considered in an anisotropic model, the linear scalar field does not lead to isotropization of expansion process. One needs to introduce scalar field with nonlinear potential for the isotropization process to take place. In this paper the general form of scalar field potentials leading to the asymptotic isotropization in case of Bianchi type-I cosmological model, and inflationary regime in case of isotropic space-time is obtained. In doing so we solved both direct and inverse problem, where by direct problem we mean to find metric functions and scalar field for the given potential, whereas, the inverse problem means to find the potential and scalar field for the given metric function. The scalar field potentials leading to the inflation and isotropization were found both for harmonic and proper synchronic time.Comment: 10 page
    corecore