47 research outputs found

    Superconductivity and magnetism in platinum-substituted SrFe2As2 single crystals

    Full text link
    Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural transition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.Comment: 6 pages, 6 figure

    Evidence of a universal and isotropic 2\Delta/kBTC ratio in 122-type iron pnictide superconductors over a wide doping range

    Get PDF
    We have systematically investigated the doping and the directional dependence of the gap structure in the 122-type iron pnictide superconductors by point contact Andreev reflection spectroscopy. The studies were performed on single crystals of Ba1-xKxFe2As2 (x = 0.29, 0.49, and 0.77) and SrFe1.74Co0.26As2 with a sharp tip of Pb or Au pressed along the c-axis or the ab-plane direction. The conductance spectra obtained on highly transparent contacts clearly show evidence of a robust superconducting gap. The normalized curves can be well described by the Blonder-Tinkham-Klapwijk model with a lifetime broadening. The determined gap value scales very well with the transition temperature, giving the 2{\Delta}/kBTC value of ~ 3.1. The results suggest the presence of a universal coupling behavior in this class of iron pnictides over a broad doping range and independent of the sign of the doping. Moreover, conductance spectra obtained on c-axis junctions and ab-plane junctions indicate that the observed gap is isotropic in these superconductors

    Extreme magnetic field-boosted superconductivity

    Full text link
    Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover
    corecore