15,116 research outputs found

    Superconducting and ferromagnetic phases induced by lattice distortions in SrFe2As2

    Full text link
    Single crystals of SrFe2As2 grown using a self-flux solution method were characterized via x-ray, transport and magnetization studies, revealing a superconducting phase below T_c = 21 K characterized by a full electrical resistivity transition and partial diamagnetic screening. The reversible destruction and reinstatement of this phase by heat treatment and mechanical deformation studies, along with single-crystal X-ray diffraction measurements, indicate that internal crystallographic strain originating from c-axis-oriented planar defects plays a central role in promoting the appearance of superconductivity under ambient pressure conditions in ~90% of as-grown crystals. The appearance of a ferromagnetic moment with magnitude proportional to the tunable superconducting volume fraction suggests that these phenomena are both stabilized by lattice distortion.Comment: 4 pages, 4 figure

    The suppression of magnetism and the development of superconductivity within the collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 at high pressure

    Full text link
    Structural and electronic characterization of (Ca0.67Sr0.33)Fe2As2 has been performed as a func- tion of pressure up to 12 GPa using conventional and designer diamond anvil cells. The compound (Ca0.67Sr0.33)Fe2As2 behaves intermediate between its end members-CaFe2As2 and SrFe2As2- displaying a suppression of magnetism and the onset of superconductivity. Like other members of the AEFe2As2 family, (Ca0.67Sr0.33)Fe2As2 undergoes a pressure-induced isostructural volume collapse, which we associate with the development of As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase abruptly cuts off the magnetic state, giving rise to superconductivity with a maximum Tc=22.2 K. The maximum Tc of the superconducting phase is not strongly correlated with any structural parameter, but its proximity to the abrupt suppression of magnetism as well as the volume collapse transition suggests that magnetic interactions and structural inhomogeneity may play a role in its development. The pressure-dependent evolution of the ordered states and crystal structures in (Ca,Sr)Fe2As2 provides an avenue to understand the generic behavior of the other members of the AEFe2As2 family.Comment: 9 pages, 9 figure

    Grind Optimisation Studies at Rakha Concentrator by Laboratory Tests

    Get PDF
    This paper briefly describes the studies conducted in Rakha concentrator for improvements in economy of operation. Studies have been conducted on flotation of ore, ground to a coarser size than the present milling practice. The objective of grinding to coarser sizes is to optimise the grind size and mix so that overgrinding may be reduced, which in turn, will help to improve the overall economy

    Analytic Time Delays and H_0 Estimates for Gravitational Lenses

    Get PDF
    We study gravitational lens time delays for a general family of lensing potentials, which includes the popular singular isothermal elliptical potential and singular isothermal elliptical density distribution but allows general angular structure. Using a novel approach, we show that the time delay can be cast in a very simple form, depending only on the observed image positions. Including an external shear changes the time delay proportional to the shear strength, and varying the radial profile of the potential changes the time delay approximately linearly. These analytic results can be used to obtain simple estimates of the time delay and the Hubble constant in observed gravitational lenses. The naive estimates for four of five time delay lenses show surprising agreement with each other and with local measurements of H_0; the complicated Q 0957+561 system is the only outlier. The agreement suggests that it is reasonable to use simple isothermal lens models to infer H_0, although it is still important to check this conclusion by examining detailed models and by measuring more lensing time delays.Comment: 16 pages with 2 embedded figures; submitted to Ap

    Bianchi type-II cosmological model: some remarks

    Full text link
    Within the framework of Bianchi type-II (BII) cosmological model the behavior of matter distribution has been considered. It is shown that the non-zero off-diagonal component of Einstein tensor implies some severe restriction on the choice of matter distribution. In particular for a locally rotationally symmetric Bianchi type-II (LRS BII) space-time it is proved that the matter distribution should be strictly isotropic if the corresponding matter field possesses only non-zero diagonal components of the energy-momentum tensor.Comment: 3 page

    A first principles investigation of cubic BaRuO3_3: A Hund's metal

    Get PDF
    A first-principles investigation of cubic-BaRuO3_3, by combining density functional theory with dynamical mean-field theory and a hybridization expansion continuous time quantum Monte-Carlo solver, has been carried out. Non-magnetic calculations with appropriately chosen on-site Coulomb repulsion, UU and Hund's exchange, JJ, for single-particle dynamics and static susceptibility show that cubic-BaRuO3_3 is in a spin-frozen state at temperatures above the ferromagnetic transition point. A strong red shift with increasing JJ of the peak in the real frequency dynamical susceptibility indicates a dramatic suppression of the Fermi liquid coherence scale as compared to the bare parameters in cubic-BaRuO3_3. The self-energy also shows clear deviation from Fermi liquid behaviour that manifests in the single-particle spectrum. Such a clean separation of energy scales in this system provides scope for an incoherent spin-frozen (SF) phase, that extends over a wide temperature range, to manifest in non-Fermi liquid behaviour and to be the precursor for the magnetically ordered ground state.Comment: 10 pages, 12 figures, 1 tabl

    Photometric Recovery of Crowded Stellar Fields Observed with HST/WFPC2 and the Effects of Confusion Noise on the Extragalactic Distance Scale

    Full text link
    We explore the limits of photometric reductions of crowded stellar fields observed with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. Two photometric procedures, based on the DoPHOT and DAOPHOT/ALLFRAME programs are tested, and the effects of crowding, complex sky background and cosmic-ray contamination are discussed using an extensive set of artificial star simulations. As a specific application of the results presented in this paper, we assess the magnitude of photometric biases on programs aimed at finding Cepheids and determining distances. We find that while the photometry in individual images can be biased too bright by up to 0.2 mag in the most crowded fields due to confusion noise, the effects on distance measurements based on Cepheid variables are insignificant, less than 0.02 mag (1% in distance) even in the most problematic cases. This result, which is at odds with claims recently surfaced in the literature, is due to the strict criteria applied in the selection of the variable stars, and the photometric cross checks made possible by the availability of multiple exposures in different filters which characterizes Cepheid observations.Comment: Accepted for publication in PASP. 41 pages, 18 figures, 8 tables. The figures included with this submission are very low quality bitmap postscript, please see http://www.astro.ucla.edu/~laura/pub.htm for the full size image
    corecore