27 research outputs found
A new model for diabetes-focused capacity building â lessons from Sri Lanka
Abstract
Sri Lanka is experiencing a rapid increase in the number of people with diabetes mellitus (DM) due to population growth and aging. Physician shortages, outdated technology, and insufficient health education have contributed to the difficulties associated with managing the burden of disease. New models of chronic disease management are needed to address the increasing prevalence of DM.
Medical students, business students, and faculty members from the University of Michigan partnered with the Grace Girlsâ Home, Trincomalee General Hospital, and Selvanayakapuram Central Hospital to identify and train diabetes-focused medical assistants (MAs) to collect and enter patient data and educate patients about their disease. Return visits to these MAs were encouraged so that patient progress and disease progression could be tracked longitudinally. Data entry was conducted through a cloud-based mechanism, facilitating patient management and descriptive characterization of the population. We implemented this pilot program in June 2016 in coordination with Trincomalee General Hospital and Selvanayakapuram Central Hospital. Over a 12-month period, 93 patients were systematically assessed by the medical assistants. All patients received education and were provided materials after the visit to better inform them about the importance of controlling their disease. Fifteen percent (14/93) of patients returned for follow-up consultation.
Trained MAs have the potential to provide support to physicians working in congested health systems in low-resource settings. Public investment in training programs for MAs and greater acceptance by physicians and patients will be essential for handling the growing burden associated with chronic illnesses like DM. Trained MAs may also play a role in improved patient education and awareness regarding diabetes self-management.https://deepblue.lib.umich.edu/bitstream/2027.42/146742/1/40842_2018_Article_74.pd
Expansion of a novel endogenous retrovirus throughout the pericentromeres of modern humans
Abstract
Background
Approximately 8% of the human genome consists of sequences of retroviral origin, a result of ancestral infections of the germ line over millions of years of evolution. The most recent of these infections is attributed to members of the human endogenous retrovirus type-K (HERV-K) (HML-2) family. We recently reported that a previously undetected, large group of HERV-K (HML-2) proviruses, which are descendants of the ancestral K111 infection, are spread throughout human centromeres.
Results
Studying the genomes of certain cell lines and the DNA of healthy individuals that seemingly lack K111, we discover new HERV-K (HML-2) members hidden in pericentromeres of several human chromosomes. All are related through a common ancestor, termed K222, which is a virus that infected the germ line approximately 25 million years ago. K222 exists as a single copy in the genomes of baboons and high order primates, but not New World monkeys, suggesting that progenitor K222 infected the primate germ line after the split between New and Old World monkeys. K222 exists in modern humans at multiple loci spread across the pericentromeres of nine chromosomes, indicating it was amplified during the evolution of modern humans.
Conclusions
Copying of K222 may have occurred through recombination of the pericentromeres of different chromosomes during human evolution. Evidence of recombination between K111 and K222 suggests that these retroviral sequences have been templates for frequent cross-over events during the process of centromere recombination in humans.http://deepblue.lib.umich.edu/bitstream/2027.42/111301/1/13059_2015_Article_641.pd
Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling
The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability
In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics
Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains,Escherichia coli DH5α,Micrococcus luteusandStaphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications
Critical stability and structural properties of screened two-electron system in Feshbach resonance state
The position (Er) and width (Î) of the first S-symmetry Feshbach resonance state (FRS) of a two-electron Zee system bound via screened Coulomb interaction have been studied by adopting the soft wall strategy of the Stabilization method. Explicitly correlated Hylleraas type basis has been adopted under the variational framework to find the energy eigenstates. Critical nuclear charge (Zc) of the Zee system in FRS has been reported for different screening parameters (λ). Moreover different structural properties i.e. expectation values of radial functions and the inter-particle angles of the system have been estimated for different λ and Z
Critical stability and quantum phase transition of two-electron system under exponential-cosine-screened-Coulomb interaction
The stability of two electron system under the influence of the exponential-cosine-screened-Coulomb (ECSC) potential has been studied as a function of continuously varying nuclear charge (Z) and screening constant (Ό). Inter-electronic correlation has explicitly been considered by adopting Hylleraas type basis set under Ritz variational framework. The correlated basis integrals originating from the elements of Hamiltonian and overlap matrices are evaluated analytically. Critical nuclear charges (Zc), the minimum amount of nuclear charge required to form at least one bound state, corresponding to different Ό values have been predicted. Different structural properties along with two-particle densities (TPD) for all possible orientations of the electrons have been estimated using the optimized wave function. Prominent signature of quantum phase transition (QPT) of the system around the Zc values has been reported. A comparative study has been done on the critical stability of the system under the influence of ECSC potential, screened Coulomb (SC) potential and pure Coulomb (PC) potential
Quantum phase transition in symmetric quantum three-body system
Bound state energy (E) and the position () and width () of the first S symmetry doubly excited Feshbach resonance state of various symmetrical three-body systems (XYY) bound via screened Coulomb (SC) interaction have been reported using soft-wall strategy of stabilization method. Explicitly correlated multi-exponent Hylleraas-type basis set has been considered under the Ritz variational framework. Critical nuclear charges of the systems in its ground state () as well as in Feshbach resonance state () for various screening parameters () have been evaluated. First-order quantum phase transition (QPT) for all the systems has been reported in its ground state. Effect of different mass combination of the constituents particles on critical points of the systems has been explored extensively
Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism
Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism. Interestingly, microRNA156 overexpression in potato provided the first evidence for induction of profuse aerial stolons and tubers from axillary meristems under short-day (SD) photoperiod. A similar phenotype was noticed for overexpression of epigenetic modifiers-MUTICOPY SUPRESSOR OF IRA1 (StMSI1) or ENAHNCER OF ZESTE 2 (StE[z]2), and knockdown of B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1 (StBMI1). This striking phenotype represents a classic example of modulation of plant architecture and developmental plasticity. Differentiation of a stolon to a tuber or a shoot under in vitro or in vivo conditions symbolizes another example of organ-level plasticity and dual fate acquisition in potato. Stolon-to-tuber transition is governed by SD photoperiod, mobile RNAs/proteins, phytohormones, a plethora of small RNAs and their targets. Recent studies show that polycomb group proteins control microRNA156, phytohormone metabolism/transport/signaling and key tuberization genes through histone modifications to govern tuber development. Our comparative analysis of differentially expressed genes between the overexpression lines of StMSI1, StBEL5 (BEL1-LIKE transcription factor [TF]), and POTATO HOMEOBOX 15 TF revealed more than 1,000 common genes, indicative of a mutual gene regulatory network potentially involved in the formation of aerial and belowground tubers. In this review, in addition to key tuberization factors, we highlight the role of photoperiod and epigenetic mechanism that regulates the development of aerial and belowground tubers in potato
The DEK Oncoprotein Functions in Ovarian Cancer Growth and Survival
DNA damage repair alterations play a critical role in ovarian cancer tumorigenesis. Mechanistic drivers of the DNA damage response consequently present opportunities for therapeutic targeting. The chromatin-binding DEK oncoprotein functions in DNA double-strand break repair. We therefore sought to determine the role of DEK in epithelial ovarian cancer. DEK is overexpressed in both primary epithelial ovarian cancers and ovarian cancer cell lines. To assess the impact of DEK expression levels on cell growth, small interfering RNA and short hairpin RNA approaches were utilized. Decreasing DEK expression in ovarian cancer cell lines slows cell growth and induces apoptosis and DNA damage. The biologic effects of DEK depletion are enhanced with concurrent chemotherapy treatment. The in vitro effects of DEK knockdown are reproduced in vivo, as DEK depletion in a mouse xenograft model results in slower tumor growth and smaller tumors compared to tumors expressing DEK. These findings provide a compelling rationale to target the DEK oncoprotein and its pathways as a therapeutic strategy for treating epithelial ovarian cancer