20,326 research outputs found

    Valley-Selective Landau-Zener Oscillations in Semi-Dirac p-n Junctions

    Full text link
    We study transport across p-n junctions of gapped two-dimensional semi-Dirac materials: nodal semimetals whose energy bands disperse quadratically and linearly along distinct crystal axes. The resulting electronic properties --- relevant to materials such as TiO2_2/VO2_2 multilayers and α\alpha-(BEDT-TTF)2_2I3_3 salts --- continuously interpolate between those of mono- and bi-layer graphene as a function of propagation angle. We demonstrate that tunneling across the junction depends on the orientation of the tunnel barrier relative to the crystalline axes, leading to strongly non-monotonic current-voltage characteristics, including negative differential conductance in some regimes. In multi-valley systems these features provide a natural route to engineering valley-selective transport.Comment: 7 pages, 7 figures, appendice

    Augmented space recursion for partially disordered systems

    Full text link
    Off-stoichiometric alloys exhibit partial disorder, in the sense that only some of the sublattices of the stoichiometric ordered alloy become disordered. This paper puts forward a generalization of the augmented space recursion (ASR) (introduced earlier by one of us (Mookerjee et al 1997(*))) for systems with many atoms per unit cell. In order to justify the convergence properties of ASR we have studied the convergence of various moments of local density of states and other physical quantities like Fermi energy and band energy. We have also looked at the convergence of the magnetic moment of Ni, which is very sensitive to numerical approximations towards the k-space value 0.6 μB\mu_{B} with the number of recursion steps prior to termination.Comment: Latex 2e, 21 Pages, 13 Figures, iopb style file attache

    Nonlinear Spinor Fields and its role in Cosmology

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-VI, VI0_0, V, III, I or isotropic Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to some restrictions on metric functions, initial anisotropy in the models Bianchi type-VI, VI0_0, V and III does not die away, while the anisotropic Bianchi type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure

    String cosmological model in the presence of a magnetic flux

    Full text link
    A Bianchi type I string cosmological model in the presence of a magnetic flux is investigated. A few plausible assumptions regarding the parametrization of the cosmic string and magneto-fluid are introduced and some exact analytical solutions are presented.Comment: 9 pages, 4 Figure

    Study of Phase Stability in NiPt Systems

    Full text link
    We have studied the problem of phase stability in NiPt alloy system. We have used the augmented space recursion based on the TB-LMTO as the method for studying the electronic structure of the alloys. In particular, we have used the relativistic generalization of our earlier technique. We note that, in order to predict the proper ground state structures and energetics, in addition to relativistic effects, we have to take into account charge transfer effects with precision.Comment: 22 pages, 7 figures. Accepted for publication in JPC

    Correlation effects on the electronic structure of TiOCl: a NMTO+DMFT study

    Full text link
    Using the recently developed N-th order muffin-tin orbital-based downfolding technique in combination with the Dynamical Mean Field theory, we investigate the electronic properties of the much discussed Mott insulator TiOCl in the undimerized phase. Inclusion of correlation effects through this approach provides a description of the spectral function into an upper and a lower Hubbard band with broad valence states formed out of the orbitally polarized, lower Hubbard band. We find that these results are in good agreement with recent photo-emission spectra.Comment: 4 pages, 3 figure

    Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

    No full text
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies

    TEQUILA: Temporal Question Answering over Knowledge Bases

    No full text
    Question answering over knowledge bases (KB-QA) poses challenges in handling complex questions that need to be decomposed into sub-questions. An important case, addressed here, is that of temporal questions, where cues for temporal relations need to be discovered and handled. We present TEQUILA, an enabler method for temporal QA that can run on top of any KB-QA engine. TEQUILA has four stages. It detects if a question has temporal intent. It decomposes and rewrites the question into non-temporal sub-questions and temporal constraints. Answers to sub-questions are then retrieved from the underlying KB-QA engine. Finally, TEQUILA uses constraint reasoning on temporal intervals to compute final answers to the full question. Comparisons against state-of-the-art baselines show the viability of our method

    Radial density profiles of time-delay lensing galaxies

    Full text link
    We present non-parametric radial mass profiles for ten QSO strong lensing galaxies. Five of the galaxies have profiles close to ρ(r)r2\rho(r)\propto r^{-2}, while the rest are closer to r^{-1}, consistent with an NFW profile. The former are all relatively isolated early-types and dominated by their stellar light. The latter --though the modeling code did not know this-- are either in clusters, or have very high mass-to-light, suggesting dark-matter dominant lenses (one is a actually pair of merging galaxies). The same models give H_0^{-1} = 15.2_{-1.7}^{+2.5}\Gyr (H_0 = 64_{-9}^{+8} \legacy), consistent with a previous determination. When tested on simulated lenses taken from a cosmological hydrodynamical simulation, our modeling pipeline recovers both H_0 and ρ(r)\rho(r) within estimated uncertainties. Our result is contrary to some recent claims that lensing time delays imply either a low H_0 or galaxy profiles much steeper than r^{-2}. We diagnose these claims as resulting from an invalid modeling approximation: that small deviations from a power-law profile have a small effect on lensing time-delays. In fact, as we show using using both perturbation theory and numerical computation from a galaxy-formation simulation, a first-order perturbation of an isothermal lens can produce a zeroth-order change in the time delays.Comment: Replaced with final version accepted for publication in ApJ; very minor changes to text; high resolution figures may be obtained at justinread.ne
    corecore