18 research outputs found

    Three ways of treating a linear delay differential equation

    Get PDF
    This work concerns the occurrence of Hopf bifurcations in delay differential equations (DDE). Such bifurcations are associated with the occurrence of pure imaginary characteristic roots in a linearized DDE. In this work we seek the exact analytical conditions for pure imaginary roots, and we compare them with the approximate conditions obtained by using the two variable expansion perturbation method. This method characteristically gives rise to a “slow flow” which contains delayed variables. In analyzing such approximate slow flows, we compare the exact treatment of the slow flow with a further approximation based on replacing the delayed variables in the slow flow with non-delayed variables, thereby reducing the DDE slow flow to an ODE. By comparing these three approaches we are able to assess the accuracy of making the various approximations. We apply this comparison to a linear harmonic oscillator with delayed self-feedback
    corecore