2 research outputs found
Breast Cancer-Derived Microparticles Reduce Cancer Cell Adhesion, an Effect Augmented by Chemotherapy
Tumor cell heterogeneity is primarily dictated by mutational changes, sometimes leading to clones that undergo a metastatic switch. However, little is known about tumor heterogeneity following chemotherapy perturbation. Here we studied the possible involvement of tumor-derived extracellular vesicles, often referred to as tumor-derived microparticles (TMPs), as mediators of the metastatic switch in the tumor microenvironment by hindering cell adhesion properties. Specifically, we show that highly metastatic or chemotherapy-treated breast cancer cells shed an increased number of TMPs compared to their respective controls. We found that these TMPs substantially reduce cell adhesion and disrupt actin filament structure, therefore increasing their biomechanical force pace, further implicating tumor cell dissemination as part of the metastatic cascade. Our results demonstrate that these pro-metastatic effects are mediated in part by CD44 which is highly expressed in TMPs obtained from highly metastatic cells or cells exposed to chemotherapy when compared to cells with low metastatic potential. Consequently, when we inhibited CD44 expression on TMPs by a pharmacological or a genetic approach, increased tumor cell adhesion and re-organized actin filament structure were observed. We also demonstrated that breast cancer patients treated with paclitaxel chemotherapy exhibited increased CD44-expressing TMPs. Overall, our study provides further insights into the role of TMPs in promoting metastasis, an effect which is augmented when tumor cells are exposed to chemotherapy
Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop
Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration. Excision of Cd44 in Cd44fl/fl;VillinCreERT2 mice reduced Wnt target gene expression in intestinal crypts and affected stem cell functionality in organoids. Although the integrity of the intestinal epithelium was conserved in mice lacking CD44, they were hypersensitive to dextran sulfate sodium, and showed more severe inflammation and delayed regeneration. We localized the molecular function of CD44 at the Wnt signalosome, and identified novel DVL/CD44 and AXIN/CD44 complexes. CD44 thus promotes optimal Wnt signaling during intestinal regeneration