13 research outputs found

    SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells

    Get PDF
    Significance Lysosomes are degradative intracellular organelles essential to cell maintenance and homeostasis. Although their degradative function is well documented, the proteins responsible for the efflux, and reuse, of lysosomal degradation products remain largely unknown. In this study, we identify the transporter responsible for lysosomal efflux of glutamine, an amino acid central to several key metabolic pathways. This central role of glutamine is exploited by several types of cancer cells with increased consumption of glutamine. Interestingly, genetic inactivation of the transporter impairs their growth under conditions of limited glutamine availability when internalized extracellular proteins are used as an alternative source of amino acids, suggesting novel approaches for anticancer therapies.</jats:p

    Molecular and cellular basis of lysosomal transmembrane protein dysfunction

    Get PDF
    AbstractLysosomal membrane proteins act at several crucial steps of the lysosome life cycle, including lumen acidification, metabolite export, molecular motor recruitment and fusion with other organelles. This review summarizes the molecular mechanisms of lysosomal storage diseases caused by defective transport of small molecules or ions across the lysosomal membrane, as well as Danon disease. In cystinosis and free sialic acid storage diseases, transporters for cystine and acidic monosaccharides, respectively, are blocked or retarded. A putative cobalamin transporter and a hybrid transporter/transferase of acetyl groups are defective in cobalamin F type disease and mucopolysaccharidosis type IIIC, respectively. In neurodegenerative forms of osteopetrosis, mutations of a proton/chloride exchanger impair the charge balance required for sustained proton pumping by the V-type ATPase, thus resulting in bone-resorption lacuna neutralization. However, the mechanism leading to lysosomal storage and neurodegeneration remains unclear. Mucolipidosis type IV is caused by mutations of a lysosomal cation channel named TRPML1; its gating properties are still poorly understood and the ion species linking this channel to lipid storage and membrane traffic defects is debated. Finally, the autophagy defect of Danon disease apparently arises from a role of LAMP2 in lysosome/autophagosome fusion, possibly secondary to a role in dynein-based centripetal motility

    Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the Vitamin B12-trafficking proteins ABCD4 and LMBD1

    No full text
    Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptormediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667-1668delAG [p.Glu556Glyfs∗27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy

    No full text
    Cystinosin, the lysosomal cystine exporter defective in cystinosis, is the founding member of a family of heptahelical membrane proteins related to bacteriorhodopsin and characterized by a duplicated motif termed the PQ loop. PQ-loop proteins are more frequent in eukaryotes than in prokaryotes; except for cystinosin, their molecular function remains elusive. In this study, we report that three yeast PQ-loop proteins of unknown function, Ypq1, Ypq2, and Ypq3, localize to the vacuolar membrane and are involved in homeostasis of cationic amino acids (CAAs). We also show that PQLC2, a mammalian PQ-loop protein closely related to yeast Ypq proteins, localizes to lysosomes and catalyzes a robust, electrogenic transport that is selective for CAAs and strongly activated at low extracytosolic pH. Heterologous expression of PQLC2 at the yeast vacuole rescues the resistance phenotype of an ypq2 mutant to canavanine, a toxic analog of arginine efficiently transported by PQLC2. Finally, PQLC2 transports a lysine-like mixed disulfide that serves as a chemical intermediate in cysteamine therapy of cystinosis, and PQLC2 gene silencing trapped this intermediate in cystinotic cells. We conclude that PQLC2 and Ypq1–3 proteins are lysosomal/vacuolar exporters of CAAs and suggest that small-molecule transport is a conserved feature of the PQ-loop protein family, in agreement with its distant similarity to SWEET sugar transporters and to the mitochondrial pyruvate carrier. The elucidation of PQLC2 function may help improve cysteamine therapy. It may also clarify the origin of CAA abnormalities in Batten disease.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore