3,513 research outputs found
Sign language recognition using wearable electronics: Implementing K-nearest neighbors with dynamic time warping and convolutional neural network algorithms
We propose a sign language recognition system based on wearable electronics and two different classification algorithms. The wearable electronics were made of a sensory glove and inertial measurement units to gather fingers, wrist, and arm/forearm movements. The classifiers were k-Nearest Neighbors with Dynamic Time Warping (that is a non-parametric method) and Convolutional Neural Networks (that is a parametric method). Ten sign-words were considered from the Italian Sign Language: cose, grazie, maestra, together with words with international meaning such as google, internet, jogging, pizza, television, twitter, and ciao. The signs were repeated one-hundred times each by seven people, five male and two females, aged 29–54 y ± 10.34 (SD). The adopted classifiers performed with an accuracy of 96.6% ± 3.4 (SD) for the k-Nearest Neighbors plus the Dynamic Time Warping and of 98.0% ± 2.0 (SD) for the Convolutional Neural Networks. Our system was made of wearable electronics among the most complete ones, and the classifiers top performed in comparison with other relevant works reported in the literature
Objective assessment of walking impairments in myotonic dystrophy by means of a wearable technology and a novel severity index
Myotonic dystrophy type 1 (DM1) is a genetic inherited autosomal dominant disease characterized by multisystem involvement, including muscle, heart, brain, eye, and endocrine system. Although several methods are available to evaluate muscle strength, endurance, and dexterity, there are no validated outcome measures aimed at objectively evaluating qualitative and quantitative gait alterations. Advantageously, wearable sensing technology has been successfully adopted in objectifying the assessment of motor disabilities in different medical occurrences, so that here we consider the adoption of such technology specifically for DM1. In particular, we measured motor tasks through inertial measurement units on a cohort of 13 DM1 patients and 11 healthy control counterparts. The motor tasks consisted of 16 meters of walking both at a comfortable speed and fast pace. Measured data consisted of plantar-flexion and dorsi-flexion angles assumed by both ankles, so to objectively evidence the footdrop behavior of the DM1 disease, and to define a novel severity index, termed SI-Norm2, to rate the grade of walking impairments. According to the obtained results, our approach could be useful for a more precise stratification of DM1 patients, providing a new tool for a personalized rehabilitation approach
Cross-verification of independent quantum devices
Quantum computers are on the brink of surpassing the capabilities of even the
most powerful classical computers. This naturally raises the question of how
one can trust the results of a quantum computer when they cannot be compared to
classical simulation. Here we present a verification technique that exploits
the principles of measurement-based quantum computation to link quantum
circuits of different input size, depth, and structure. Our approach enables
consistency checks of quantum computations within a device, as well as between
independent devices. We showcase our protocol by applying it to five
state-of-the-art quantum processors, based on four distinct physical
architectures: nuclear magnetic resonance, superconducting circuits, trapped
ions, and photonics, with up to 6 qubits and 200 distinct circuits
Genuine Counterfactual Communication with a Nanophotonic Processor
In standard communication information is carried by particles or waves.
Counterintuitively, in counterfactual communication particles and information
can travel in opposite directions. The quantum Zeno effect allows Bob to
transmit a message to Alice by encoding information in particles he never
interacts with. The first suggested protocol not only required thousands of
ideal optical components, but also resulted in a so-called "weak trace" of the
particles having travelled from Bob to Alice, calling the scalability and
counterfactuality of previous proposals and experiments into question. Here we
overcome these challenges, implementing a new protocol in a programmable
nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides
that operate at telecom wavelengths. This, together with our telecom
single-photon source and highly-efficient superconducting nanowire
single-photon detectors, provides a versatile and stable platform for a
high-fidelity implementation of genuinely trace-free counterfactual
communication, allowing us to actively tune the number of steps in the Zeno
measurement, and achieve a bit error probability below 1%, with neither
post-selection nor a weak trace. Our demonstration shows how our programmable
nanophotonic processor could be applied to more complex counterfactual tasks
and quantum information protocols.Comment: 6 pages, 4 figure
Recommended from our members
Trace-free counterfactual communication with a nanophotonic processor
Abstract: In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols
Recommended from our members
Search for MSSM Higgs bosons decaying to μ+μ-in proton-proton collisions at √s=13TeV
A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13TeVwere used, corresponding to an integrated luminosity of 35.9fb-1. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a bbquark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the mmod+hand phenomenological MSSM scenarios on the parameter tanβas a function of the mass of the pseudoscalar Aboson, in the range from 130 to 600GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with bquarks, in the mass range from 130 to 1000GeV
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV
This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]
- …