328 research outputs found

    Is there Quark Matter in (Low-Mass) Pulsars?

    Full text link
    The effect of the QCD phase transition is studied for the mass-radius relation of compact stars and for hot and dense matter at a given proton fraction used as input in core-collapse supernova simulations. The phase transitions to the 2SC and CFL color superconducting phases lead to stable hybrid star configurations with a pure quark matter core. In supernova explosions quark matter could be easily produced due to β\beta-equilibrium, small proton fractions and nonvanishing temperatures. A low critical density for the phase transition to quark matter is compatible with present pulsar mass measurements.Comment: 4 pages, 3 figures, talk given at the QM2008 conference, Jaipur, India, February 4-10, 2008, JPG in pres

    Symmetry energy impact in simulations of core-collapse supernovae

    Get PDF
    We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densComment: 19 pages, 13 figures, submitted to EPJA special volume on symmetry energ

    Implications for compact stars of a soft nuclear equation of state from heavy-ion data

    Get PDF
    We study the implications on compact star properties of a soft nuclear equation of state determined from kaon production at subthreshold energies in heavy-ion collisions. On one hand, we apply these results to study radii and moments of inertia of light neutron stars. Heavy-ion data provides constraints on nuclear matter at densities relevant for those stars and, in particular, to the density dependence of the symmetry energy of nuclear matter. On the other hand, we derive a limit for the highest allowed neutron star mass of three solar masses. For that purpouse, we use the information on the nucleon potential obtained from the analysis of the heavy-ion data combined with causality on the nuclear equation of state

    Strangeness in Compact Stars

    Full text link
    We discuss the impact of strange hadrons, in particular hyperons, on the gross features of compact stars and on core-collapse supernovae. Hyperons are likely to be the first exotic species which appears around twice normal nuclear matter density in the core of neutron stars. Their presence largely influences the mass-radius relation of compact stars, the maximum mass, the cooling of neutron stars, the stability with regard to the emission of gravitational waves from rotation-powered neutron stars and the possible early onset of the QCD phase transition in core-collapse supernovae. We outline also the constraints from subthreshold kaon production in heavy-ion collisions for the maximum possible mass of neutron stars.Comment: 8 pages, invited talk given at the 10th International Conference on Hypernuclear and Strange Particle Physics (HYP-X) September 14-18, 2009, Tokai, Ibaraki, Japan, ref. and acknowledgment adde
    corecore