1,988 research outputs found

    Regeneration experiments below 10K in a regenerative-cycle cryocooler

    Get PDF
    At temperatures below 10K, regenerative cycle cryocoolers are limited by regeneration losses in the helium working fluid which result from the decreasing heat capacity of the regenerating material and the increasing density of helium. Experiments examining several approaches to improving the low-temperature regeneration in a four-stage regenerative cycle cooler constructed primarily of fiberglass materials are discussed. Using an interchangeable fourth stage, the experiments included configurations with multiple regeneration passages, and a static helium volume for increased heat capacity. Experiments using helium-3 as the working fluid and a Malone stage are planned. Results indicate that, using these techniques, it should be possible to construct a regenerative cycle cooler which will operate below 6K

    A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    Get PDF
    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort

    Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations

    Full text link
    We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments

    Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Full text link
    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin. This constitutes a reduction of the number of conditions needed to observe self-similarity in graphene-based structures, see D\'iaz-Guerrero et al. [D. S. D\'iaz-Guerrero, L. M. Gaggero-Sager, I. Rodr\'iguez-Vargas, and G. G. Naumis, arXiv:1503.03412v1, 2015]

    Engineering verification of the biomass production chamber

    Get PDF
    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study

    Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    Get PDF
    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research
    corecore