6 research outputs found

    Exercise-based cardiac rehabilitation for adults with heart failure

    Get PDF
    Background Chronic heart failure (HF) is a growing global health challenge. People with HF experience substantial burden that includes low exercise tolerance, poor health-related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous (2014) Cochrane systematic review reported that exercise-based cardiac rehabilitation (CR) compared to no exercise control shows improvement in HRQoL and hospital admission among people with HF, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane Review include the following: (1) most trials were undertaken in patients with HF with reduced (< 45%) ejection fraction (HFrEF), and women, older people, and those with preserved (≥ 45%) ejection fraction HF (HFpEF) were under-represented; and (2) most trials were undertaken in the hospital/centre-based setting. Objectives To determine the effects of exercise-based cardiac rehabilitation on mortality, hospital admission, and health-related quality of life of people with heart failure. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and three other databases on 29 January 2018. We also checked the bibliographies of systematic reviews and two trial registers. Selection criteria We included randomised controlled trials that compared exercise-based CR interventions with six months’ or longer follow-up versus a no exercise control that could include usual medical care. The study population comprised adults (> 18 years) with evidence of HF - either HFrEF or HFpEF. Data collection and analysis Two review authors independently screened all identified references and rejected those that were clearly ineligible for inclusion in the review. We obtained full papers of potentially relevant trials. Two review authors independently extracted data from the included trials, assessed their risk of bias, and performed GRADE analyses. Main results We included 44 trials (5783 participants with HF) with a median of six months’ follow-up. For this latest update, we identified 11 new trials (N = 1040), in addition to the previously identified 33 trials. Although the evidence base includes predominantly patients with HFrEF with New York Heart Association classes II and III receiving centre-based exercise-based CR programmes, a growing body of studies include patients with HFpEF and are undertaken in a home-based setting. All included studies included a no formal exercise training intervention comparator. However, a wide range of comparators were seen across studies that included active intervention (i.e. education, psychological intervention) or usual medical care alone. The overall risk of bias of included trials was low or unclear, and we downgraded results using the GRADE tool for all but one outcome. Cardiac rehabilitation may make little or no difference in all-cause mortality over the short term (≤ one year of follow-up) (27 trials, 28 comparisons (2596 participants): intervention 67/1302 (5.1%) vs control 75/1294 (5.8%); risk ratio (RR) 0.89, 95% confidence interval (CI) 0.66 to 1.21; low-quality GRADE evidence) but may improve all-cause mortality in the long term (> 12 months follow up) (6 trials/comparisons (2845 participants): intervention 244/1418 (17.2%) vs control 280/1427 (19.6%) events): RR 0.88, 95% CI 0.75 to 1.02; high-quality evidence). Researchers provided no data on deaths due to HF. CR probably reduces overall hospital admissions in the short term (up to one year of follow-up) (21 trials, 21 comparisons (2182 participants): (intervention 180/1093 (16.5%) vs control 258/1089 (23.7%); RR 0.70, 95% CI 0.60 to 0.83; moderate-quality evidence, number needed to treat: 14) and may reduce HF-specific hospitalisation (14 trials, 15 comparisons (1114 participants): (intervention 40/562 (7.1%) vs control 61/552 (11.1%) RR 0.59, 95% CI 0.42 to 0.84; low-quality evidence, number needed to treat: 25). After CR, a clinically important improvement in shortterm disease-specific health-related quality of life may be evident (Minnesota Living With Heart Failure questionnaire - 17 trials, 18 comparisons (1995 participants): mean difference (MD) -7.11 points, 95% CI -10.49 to -3.73; low-quality evidence). Pooling across all studies, regardless of the HRQoL measure used, shows there may be clinically important improvement with exercise (26 trials, 29 comparisons (3833 participants); standardised mean difference (SMD) -0.60, 95% CI -0.82 to -0.39; I² = 87%; Chi² = 215.03; lowquality evidence). ExCR effects appeared to be consistent different models of ExCR delivery: centre vs. home-based, exercise dose, exercise only vs. comprehensive programmes, and aerobic training alone vs aerobic plus resistance programmes. Authors’ conclusions This updated Cochrane Review provides additional randomised evidence (11 trials) to support the conclusions of the previous version (2014) of this Cochane Review. Compared to no exercise control, CR appears to have no impact on mortality in the short term (< 12 months’ follow-up). Low- to moderate-quality evidence shows that CR probably reduces the risk of all-cause hospital admissions and may reduce HF-specific hospital admissions in the short term (up to 12 months). CR may confer a clinically important improvement in health-related quality of life, although we remain uncertain about this because the evidence is of low quality. Future ExCR trials need to continue to consider the recruitment of traditionally less represented HF patient groups including older, female, and HFpEF patients, and alternative CR delivery settings including home- and using technology-based programmes

    Exercise-based rehabilitation for heart failure : systematic review and meta-analysis

    Get PDF
    Objective: To update the Cochrane systematic review of exercise-based cardiac rehabilitation (CR) for heart failure. Methods: A systematic review and meta-analysis of randomised controlled trials was undertaken. MEDLINE, EMBASE and the Cochrane Library were searched up to January 2013. Trials with 6 or more months of follow-up were included if they assessed the effects of exercise interventions alone or as a component of comprehensive CR programme compared with no exercise control. Results: 33 trials were included with 4740 participants predominantly with a reduced ejection fraction (<40%) and New York Heart Association class II and III. Compared with controls, while there was no difference in pooled all-cause mortality between exercise CR with follow-up to 1 year (risk ratio (RR) 0.93; 95% CI 0.69 to 1.27, p=0.67), there was a trend towards a reduction in trials with follow-up beyond 1 year (RR 0.88; 0.75 to 1.02, 0.09). Exercise CR reduced the risk of overall (RR 0.75; 0.62 to 0.92, 0.005) and heart failure-specific hospitalisation (RR 0.61; 0.46 to 0.80, 0.0004) and resulted in a clinically important improvement in the Minnesota Living with Heart Failure questionnaire (mean difference: −5.8 points, −9.2 to −2.4, 0.0007). Univariate meta-regression analysis showed that these benefits were independent of the type and dose of exercise CR, and trial duration of follow- up, quality or publication date. Conclusions: This updated Cochrane review shows that improvements in hospitalisation and health-related quality of life with exercise-based CR appear to be consistent across patients regardless of CR programme characteristics and may reduce mortality in the longer term. An individual participant data meta-analysis is needed to provide confirmatory evidence of the importance of patient subgroup and programme level characteristics (eg, exercise dose) on outcome

    Exercise-based rehabilitation for heart failure

    No full text
    Background Previous systematic reviews and meta-analyses consistently show the positive effect of exercise-based rehabilitation for heart failure (HF) on exercise capacity; however, the direction and magnitude of effects on health-related quality of life, mortality and hospital admissions in HF remain less certain. This is an update of a Cochrane systematic review previously published in 2010. Objectives To determine the effectiveness of exercise-based rehabilitation on the mortality, hospitalisation admissions, morbidity and health-related quality of life for people with HF. Review inclusion criteria were extended to consider not only HF due to reduced ejection fraction (HFREF or 'systolic HF') but also HF due to preserved ejection fraction (HFPEF or 'diastolic HF'). Search methods We updated searches from the previous Cochrane review. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue1, 2013) from January 2008 to January 2013. We also searched MEDLINE (Ovid), EMBASE (Ovid), CINAHL (EBSCO) and PsycINFO (Ovid) (January 2008 to January 2013). We handsearched Web of Science, bibliographies of systematic reviews and trial registers (Controlled-trials.com and Clinicaltrials.gov). Selection criteria Randomised controlled trials of exercise-based interventions with six months' follow-up or longer compared with a no exercise control that could include usual medical care. The study population comprised adults over 18 years and were broadened to include individuals with HFPEF in addition to HFREF. Data collection and analysis Two review authors independently screened all identified references and rejected those that were clearly ineligible. We obtained full-text papers of potentially relevant trials. One review author independently extracted data from the included trials and assessed their risk of bias; a second review author checked data. Main results We included 33 trials with 4740 people with HF predominantly with HFREF and New York Heart Association classes II and III. This latest update identified a further 14 trials. The overall risk of bias of included trials was moderate. There was no difference in pooled mortality between exercise-based rehabilitation versus no exercise control in trials with up to one-year follow-up (25 trials, 1871 participants: risk ratio (RR) 0.93; 95% confidence interval (CI) 0.69 to 1.27, fixed-effect analysis). However, there was trend towards a reduction in mortality with exercise in trials with more than one year of follow-up (6 trials, 2845 participants: RR 0.88; 95% CI 0.75 to 1.02, fixed-effect analysis). Compared with control, exercise training reduced the rate of overall (15 trials, 1328 participants: RR 0.75; 95% CI 0.62 to 0.92, fixed-effect analysis) and HF specific hospitalisation (12 trials, 1036 participants: RR 0.61; 95% CI 0.46 to 0.80, fixed-effect analysis). Exercise also resulted in a clinically important improvement superior in the Minnesota Living with Heart Failure questionnaire (13 trials, 1270 participants: mean difference: -5.8 points; 95% CI -9.2 to -2.4, random-effects analysis) - a disease specific health-related quality of life measure. However, levels of statistical heterogeneity across studies in this outcome were substantial. Univariate meta-regression analysis showed that these benefits were independent of the participant's age, gender, degree of left ventricular dysfunction, type of cardiac rehabilitation (exercise only vs. comprehensive rehabilitation), mean dose of exercise intervention, length of follow-up, overall risk of bias and trial publication date. Within these included studies, a small body of evidence supported exercise-based rehabilitation for HFPEF (three trials, undefined participant number) and when exclusively delivered in a home-based setting (5 trials, 521 participants). One study reported an additional mean healthcare cost in the training group compared with control of USD3227/person. Two studies indicated exercise-based rehabilitation to be a potentially cost-effective use of resources in terms of gain in quality-adjusted life years (QALYs) and life-years saved. Authors' conclusions This updated Cochrane review supports the conclusions of the previous version of this review that, compared with no exercise control, exercise-based rehabilitation does not increase or decrease the risk of all-cause mortality in the short term (up to 12-months' follow-up) but reduces the risk of hospital admissions and confers important improvements in health-related quality of life. This update provides further evidence that exercise training may reduce mortality in the longer term and that the benefits of exercise training on appear to be consistent across participant characteristics including age, gender and HF severity. Further randomised controlled trials are needed to confirm the small body of evidence seen in this review for the benefit of exercise in HFPEF and when exercise rehabilitation is exclusively delivered in a home-based setting

    Exercise-based cardiac rehabilitation for adults with heart failure

    No full text
    Background People with heart failure experience substantial disease burden that includes low exercise tolerance, poor health‐related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous 2018 Cochrane review reported that exercise‐based cardiac rehabilitation (ExCR) compared to no exercise control shows improvement in HRQoL and hospital admission amongst people with heart failure, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane review include the following: (1) most trials were undertaken in patients with heart failure with reduced (&lt; 45%) ejection fraction (HFrEF), and women, older people, and those with heart failure with preserved (≥ 45%) ejection fraction (HFpEF) were under‐represented; and (2) most trials were undertaken in a hospital or centre‐based setting. Objectives To assess the effects of ExCR on mortality, hospital admission, and health‐related quality of life of adults with heart failure. Search methods We searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO and Web of Science without language restriction on 13 December 2021. We also checked the bibliographies of included studies, identified relevant systematic reviews, and two clinical trials registers. Selection criteria We included randomised controlled trials (RCTs) that compared ExCR interventions (either exercise only or exercise as part of a comprehensive cardiac rehabilitation) with a follow‐up of six months or longer versus a no‐exercise control (e.g. usual medical care). The study population comprised adults (≥ 18 years) with heart failure ‐ either HFrEF or HFpEF. Data collection and analysis We used standard Cochrane methods. Our primary outcomes were all‐cause mortality, mortality due to heart failure, all‐cause hospital admissions, heart failure‐related hospital admissions, and HRQoL. Secondary outcomes were costs and cost‐effectiveness. We used GRADE to assess the certainty of the evidence. Main results We included 60 trials (8728 participants) with a median of six months' follow‐up. For this latest update, we identified 16 new trials (2945 new participants), in addition to the previously identified 44 trials (5783 existing participants). Although the existing evidence base predominantly includes patients with HFrEF, with New York Heart Association (NYHA) classes II and III receiving centre‐based ExCR programmes, a growing body of trials includes patients with HFpEF with ExCR undertaken in a home‐based setting. All included trials employed a usual care comparator with a formal no‐exercise intervention as well as a wide range of active comparators, such as education, psychological intervention, or medical management. The overall risk of bias in the included trials was low or unclear, and we mostly downgraded the certainty of evidence of outcomes upon GRADE assessment. There was no evidence of a difference in the short term (up to 12 months' follow‐up) in the pooled risk of all‐cause mortality when comparing ExCR versus usual care (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.71 to 1.21; absolute effects 5.0% versus 5.8%; 34 trials, 36 comparisons, 3941 participants; low‐certainty evidence). Only a few trials reported information on whether participants died due to heart failure. Participation in ExCR versus usual care likely reduced the risk of all‐cause hospital admissions (RR 0.69, 95% CI 0.56 to 0.86; absolute effects 15.9% versus 23.8%; 23 trials, 24 comparisons, 2283 participants; moderate‐certainty evidence) and heart failure‐related hospital admissions (RR 0.82, 95% CI 0.49 to 1.35; absolute effects 5.6% versus 6.4%; 10 trials; 10 comparisons, 911 participants; moderate‐certainty evidence) in the short term. Participation in ExCR likely improved short‐term HRQoL as measured by the Minnesota Living with Heart Failure (MLWHF) questionnaire (lower scores indicate better HRQoL and a difference of 5 points or more indicates clinical importance; mean difference (MD) −7.39 points, 95% CI −10.30 to −4.77; 21 trials, 22 comparisons, 2699 participants; moderate‐certainty evidence). When pooling HRQoL data measured by any questionnaire/scale, we found that ExCR may improve HRQoL in the short term, but the evidence is very uncertain (33 trials, 37 comparisons, 4769 participants; standardised mean difference (SMD) −0.52, 95% CI −0.70 to −0.34; very‐low certainty evidence). ExCR effects appeared to be consistent across different models of ExCR delivery: centre‐ versus home‐based, exercise dose, exercise only versus comprehensive programmes, and aerobic training alone versus aerobic plus resistance programmes. Authors' conclusions This updated Cochrane review provides additional randomised evidence (16 trials) to support the conclusions of the previous 2018 version of the review. Compared to no exercise control, whilst there was no evidence of a difference in all‐cause mortality in people with heart failure, ExCR participation likely reduces the risk of all‐cause hospital admissions and heart failure‐related hospital admissions, and may result in important improvements in HRQoL. Importantly, this updated review provides additional evidence supporting the use of alternative modes of ExCR delivery, including home‐based and digitally‐supported programmes. Future ExCR trials need to focus on the recruitment of traditionally less represented heart failure patient groups including older patients, women, and those with HFpEF

    Exercise-based cardiac rehabilitation for adults with heart failure

    No full text
    BACKGROUND: People with heart failure experience substantial disease burden that includes low exercise tolerance, poor health-related quality of life (HRQoL), increased risk of mortality and hospital admission, and high healthcare costs. The previous 2018 Cochrane review reported that exercise-based cardiac rehabilitation (ExCR) compared to no exercise control shows improvement in HRQoL and hospital admission amongst people with heart failure, as well as possible reduction in mortality over the longer term, and that these reductions appear to be consistent across patient and programme characteristics. Limitations noted by the authors of this previous Cochrane review include the following: (1) most trials were undertaken in patients with heart failure with reduced (&lt; 45%) ejection fraction (HFrEF), and women, older people, and those with heart failure with preserved (≥ 45%) ejection fraction (HFpEF) were under-represented; and (2) most trials were undertaken in a hospital or centre-based setting.OBJECTIVES: To assess the effects of ExCR on mortality, hospital admission, and health-related quality of life of adults with heart failure.SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO and Web of Science without language restriction on 13 December 2021. We also checked the bibliographies of included studies, identified relevant systematic reviews, and two clinical trials registers.SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared ExCR interventions (either exercise only or exercise as part of a comprehensive cardiac rehabilitation) with a follow-up of six months or longer versus a no-exercise control (e.g. usual medical care). The study population comprised adults (≥ 18 years) with heart failure - either HFrEF or HFpEF.DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were all-cause mortality, mortality due to heart failure, all-cause hospital admissions, heart failure-related hospital admissions, and HRQoL. Secondary outcomes were costs and cost-effectiveness. We used GRADE to assess the certainty of the evidence.MAIN RESULTS: We included 60 trials (8728 participants) with a median of six months' follow-up. For this latest update, we identified 16 new trials (2945 new participants), in addition to the previously identified 44 trials (5783 existing participants). Although the existing evidence base predominantly includes patients with HFrEF, with New York Heart Association (NYHA) classes II and III receiving centre-based ExCR programmes, a growing body of trials includes patients with HFpEF with ExCR undertaken in a home-based setting. All included trials employed a usual care comparator with a formal no-exercise intervention as well as a wide range of active comparators, such as education, psychological intervention, or medical management. The overall risk of bias in the included trials was low or unclear, and we mostly downgraded the certainty of evidence of outcomes upon GRADE assessment. There was no evidence of a difference in the short term (up to 12 months' follow-up) in the pooled risk of all-cause mortality when comparing ExCR versus usual care (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.71 to 1.21; absolute effects 5.0% versus 5.8%; 34 trials, 36 comparisons, 3941 participants; low-certainty evidence). Only a few trials reported information on whether participants died due to heart failure. Participation in ExCR versus usual care likely reduced the risk of all-cause hospital admissions (RR 0.69, 95% CI 0.56 to 0.86; absolute effects 15.9% versus 23.8%; 23 trials, 24 comparisons, 2283 participants; moderate-certainty evidence) and heart failure-related hospital admissions (RR 0.82, 95% CI 0.49 to 1.35; absolute effects 5.6% versus 6.4%; 10 trials; 10 comparisons, 911 participants; moderate-certainty evidence) in the short term. Participation in ExCR likely improved short-term HRQoL as measured by the Minnesota Living with Heart Failure (MLWHF) questionnaire (lower scores indicate better HRQoL and a difference of 5 points or more indicates clinical importance; mean difference (MD) -7.39 points, 95% CI -10.30 to -4.77; 21 trials, 22 comparisons, 2699 participants; moderate-certainty evidence). When pooling HRQoL data measured by any questionnaire/scale, we found that ExCR may improve HRQoL in the short term, but the evidence is very uncertain (33 trials, 37 comparisons, 4769 participants; standardised mean difference (SMD) -0.52, 95% CI -0.70 to -0.34; very-low certainty evidence). ExCR effects appeared to be consistent across different models of ExCR delivery: centre- versus home-based, exercise dose, exercise only versus comprehensive programmes, and aerobic training alone versus aerobic plus resistance programmes.AUTHORS' CONCLUSIONS: This updated Cochrane review provides additional randomised evidence (16 trials) to support the conclusions of the previous 2018 version of the review. Compared to no exercise control, whilst there was no evidence of a difference in all-cause mortality in people with heart failure, ExCR participation likely reduces the risk of all-cause hospital admissions and heart failure-related hospital admissions, and may result in important improvements in HRQoL. Importantly, this updated review provides additional evidence supporting the use of alternative modes of ExCR delivery, including home-based and digitally-supported programmes. Future ExCR trials need to focus on the recruitment of traditionally less represented heart failure patient groups including older patients, women, and those with HFpEF.</p
    corecore