1,281 research outputs found

    Are stress-free membranes really 'tensionless'?

    Full text link
    In recent years it has been argued that the tension parameter driving the fluctuations of fluid membranes, differs from the imposed lateral stress, the 'frame tension'. In particular, stress-free membranes were predicted to have a residual fluctuation tension. In the present paper, this argument is reconsidered and shown to be inherently inconsistent -- in the sense that a linearized theory, the Monge model, is used to predict a nonlinear effect. Furthermore, numerical simulations of one-dimensional stiff membranes are presented which clearly demonstrate, first, that the internal 'intrinsic' stress in membranes indeed differs from the frame tension as conjectured, but second, that the fluctuations are nevertheless driven by the frame tension. With this assumption, the predictions of the Monge model agree excellently with the simulation data for stiffness and tension values spanning several orders of magnitude

    Membrane fluctuations near a plane rigid surface

    Full text link
    We use analytical calculations and Monte Carlo simulations to determine the thermal fluctuation spectrum of a membrane patch of a few tens of nanometer in size, whose corners are located at a fixed distance dd above a plane rigid surface. Our analysis shows that the surface influence on the bilayer fluctuations can be effectively described in terms of a uniform confining potential that grows quadratically with the height of the membrane hh relative to the surface: V=(1/2)γh2V=(1/2)\gamma h^2. The strength γ\gamma of the harmonic confining potential vanishes when the corners of the membrane patch are placed directly on the surface (d=0d=0), and achieves its maximum value when dd is of the order of a few nanometers. However, even at maximum strength the confinement effect is quite small and has noticeable impact only on the amplitude of the largest bending mode.Comment: Accepted for publication in Phys. Rev.

    Dynamics of a thin liquid film with surface rigidity and spontaneous curvature

    Full text link
    The effect of rigid surfaces on the dynamics of thin liquid films which are amenable to the lubrication approximation is considered. It is shown that the Helfrich energy of the layer gives rise to additional terms in the time-evolution equations of the liquid film. The dynamics is found to depend on the absolute value of the spontaneous curvature, irrespective of its sign. Due to the additional terms, a novel finite wavelength instability of flat rigid interfaces can be observed. Furthermore, the dependence of the shape of a droplet on the bending rigidity as well as on the spontaneous curvature is discussed.Comment: 4 pages, 5 figure

    The lamellar-to-isotropic transition in ternary amphiphilic systems

    Full text link
    We study the dependence of the phase behavior of ternary amphiphilic systems on composition and temperature. Our analysis is based on a curvature elastic model of the surfactant film with sufficiently large spontaneous curvature and sufficiently negative saddle-splay modulus that the stable phases are the lamellar phase and a droplet microemulsion. In addition to the curvature energy, we consider the contributions to the free energy of the long-ranged van der Waals interaction and of the undulation modes. We find that for bending rigidities of order k_B T, the lamellar phase extends further and further into the water apex of the phase diagram as the phase inversion temperature is approached, in good agreement with experimental results.Comment: LaTeX2e, 11 pages with references and 2 eps figures included, submitted to Europhys. Let

    Swelling of particle-encapsulating random manifolds

    Full text link
    We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems -- a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure

    Minimal Bending Energies of Bilayer Polyhedra

    Get PDF
    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra

    Self-Consistent Field Theory of Multiply-Branched Block Copolymer Melts

    Full text link
    We present a numerical algorithm to evaluate the self-consistent field theory for melts composed of block copolymers with multiply-branched architecture. We present results for the case of branched copolymers with doubly-functional groups for multiple branching generations. We discuss the stability of the cubic phase of spherical micelles, the A15 phase, as a consequence of tendency of the AB interfaces to conform to the polyhedral environment of the Voronoi cell of the micelle lattice.Comment: 12 pages, 10 includes figure

    Saddle-splay modulus of a particle-laden fluid interface

    Full text link
    The scaled-particle theory equation of state for the two-dimensional hard-disk fluid on a curved surface is proposed and used to determine the saddle-splay modulus of a particle-laden fluid interface. The resulting contribution to saddle-splay modulus, which is caused by thermal motion of the adsorbed particles, is comparable in magnitude with the saddle-splay modulus of a simple fluid interface.Comment: 10 pages, 2 figure

    Singular electrostatic energy of nanoparticle clusters

    Full text link
    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation hh has a strong logarithmic dependence on hh. We give a general law for the strength of this logarithmic correction in terms of a) the energy at contact ignoring the charge quantization effects and b) an adjacency matrix specifying which spheres of the cluster are in contact and which is charged. We verify the theory by comparing the predicted energies for a tetrahedral cluster with an explicit numerical calculation.Comment: 17 pages, 3 figures. Submitted to Phys Rev

    Universal reduction of pressure between charged surfaces by long-wavelength surface charge modulation

    Full text link
    We predict theoretically that long-wavelength surface charge modulations universally reduce the pressure between the charged surfaces with counterions compared with the case of uniformly charged surfaces with the same average surface charge density. The physical origin of this effect is the fact that surface charge modulations always lead to enhanced counterion localization near the surfaces, and hence, fewer charges at the midplane. We confirm the last prediction with Monte Carlo simulations.Comment: 8 pages 1 figure, Europhys. Lett., in pres
    • …
    corecore