6,944 research outputs found

    Microscopic mechanisms of magnetization reversal

    Full text link
    Two principal scenarios of magnetization reversal are considered. In the first scenario all spins perform coherent motion and an excess of magnetic energy directly goes to a nonmagnetic thermal bath. A general dynamic equation is derived which includes a tensor damping term similar to the Bloch-Bloembergen form but the magnetization magnitude remains constant for any deviation from equilibrium. In the second reversal scenario, the absolute value of the averaged sample magnetization is decreased by a rapid excitation of nonlinear spin-wave resonances by uniform magnetization precession. We have developed an analytic k-space micromagnetic approach that describes this entire reversal process in an ultra-thin soft ferromagnetic film for up to 90^{o} deviation from equilibrium. Conditions for the occurrence of the two scenarios are discussed

    Possibility of Geometric Description of Quasiparticles in Solids

    Full text link
    New phenomenological approach for the description of elementary collective excitations is proposed. The crystal is considered to be an anisotropic space-time vacuum with a prescribed metric tensor in which the information on electromagnetic crystalline fields is included. The quasiparticles in this space are supposed to be described by the equations structurally similar to the relativistic wave equations for particles in empty space. The generalized Klein-Gordon-Fock equation and the generalized Dirac equation in external electromagnetic field are considered. The applicability of the proposed approach to the case of conduction electron in a crystal is discussed.Comment: 17 pages, latex; to appear in Int. Jnl. Mod. Phy

    Decay Properties Of The Dipole Isobaric Analog Resonances

    Get PDF
    A continuum-RPA-based approach is applied to describe the decay properties of isolated dipole isobaric analog resonances in nuclei having not-too-large neutron excess. Calculated for a few resonances in 90Zr the elastic E1-radiative width and partial proton widths for decay into one-hole states of 89Y are compared with available experimental data.Comment: 8 pages, 4 figures, prepared with RevTe

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Fluctuation-dissipation considerations and damping models for ferromagnetic materials

    Full text link
    The role of fluctuation-dissipation relations (theorems) for the magnetization dynamics with Landau-Lifshitz-Gilbert and Bloch-Bloembergen damping terms are discussed. We demonstrate that the use of the Callen-Welton fluctuation-dissipation theorem that was proven for Hamiltonian systems can give an inconsistent result for magnetic systems with dissipation

    On Uniqueness of Boundary Blow-up Solutions of a Class of Nonlinear Elliptic Equations

    Full text link
    We study boundary blow-up solutions of semilinear elliptic equations Lu=u+pLu=u_+^p with p>1p>1, or Lu=eauLu=e^{au} with a>0a>0, where LL is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.Comment: To appear in Comm. Partial Differential Equations; 10 page
    • …
    corecore