6 research outputs found

    new controversies and puzzles

    Get PDF
    Nature uses an Mn cluster for water oxidation, and thus, water oxidation using Mn clusters is interesting when used in artificial water-splitting systems. An important question is whether an Mn cluster is a true catalyst for water oxidation or not. Herein, an Mn–K cluster was investigated for electrochemical water oxidation to find the true and the kinetically dominant catalyst using X-ray absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and electrochemical methods. The experiments showed that conversion into nanosized Mn oxide occurred for the cluster, and the nanosized Mn oxides are the true catalyst for water oxidation

    Synthesis of porous silica hollow spheres using sacrificial template for drug delivery applications

    No full text
    In this work, we report on the synthesis of SiO2 hollow spheres using carbon nanospheres as the sacrificial template by hydrothermal method. The synthesized substrates are in a spherical morphology and uniform size distribution. The effects of hydrothermal process, concentration and the reaction temperature were optimized during synthesis of carbon nanospheres. Infrared spectroscopy (IR), and scanning electronic microscopy (SEM) methods were used for identification of the synthesized products. The synthesized SiO2 nanospheres were used as drug carrier to investigate in vitro release behavior of monoterpenic phenol isomers, carvacrol and thymol, in simulated body fluid (SBF). Ultraviolet-visible spectroscopy (UV-vis) method was carried out to determine the amount of the drugs entrapped in the carrier. The results indicated that SiO2 nanospheres have high ability to adsorb the drugs and there is no need for adjusting the pH during the adsorption process. The drug release profile shows a three stages pattern and indicates a delayed release action

    Corrosion Resistance Evaluation of Self-Healing Epoxy Coating Based on Dual-Component Capsules Containing Resin and Curing Agent

    No full text
    In this study, a self-healing epoxy coating was prepared by incorporating a dual capsule healing system including epoxy resin and its amine-based curing agent. The emulsion electrospray technique was used for encapsulating the healing agents in poly(styrene co-acrylonitrile) (SAN) as shell material. Characterizing the prepared microcapsules (MCs) by Scanning Electron Microscopy (SEM) revealed their spherical morphology with the particle size of 827 nm and 749 nm for epoxy and amine cores, respectively. Fourier Transform Infrared Spectroscopy (FT-IR) and thermogravimetric analysis (TGA) results confirmed successful encapsulation with no side chemical reaction between the encapsulated core and shell materials. The effects of embedding MCs on the physical and mechanical properties of the epoxy coating matrix were studied by pull-off adhesion, conical mandrel bending, and gloss tests. In addition, the prepared coatings’ self-healing performance was evaluated by Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization (Tafel) experiments. The results revealed that the coating sample containing 1 wt% of core-shell MCs (a mixture of epoxy and amine-containing MCs with a 50 : 50 weight ratio) showed the best corrosion performance with 99% self-healing efficiency
    corecore