887 research outputs found

    Theory of a Continuous Hc2_{c2} Normal-to-Superconducting Transition

    Full text link
    I study the Hc2H_{c2} transition within the Ginzburg-Landau model, with mm-component order parameter ψi\psi_i. I find a renormalized fixed point free energy, exact in m→∞m\rightarrow\infty limit, suggestive of a 22nd-order transition in contrast to a general belief of a 11st-order transition. The thermal fluctuations for H≠0H\neq 0 force one to consider an infinite set of marginally relevant operators for d<duc=6d<d_{uc}=6. I find dlc=4d_{lc}=4, predicting that the ODLRO does not survive thermal fluctuations in d=2,3d=2,3. The result is a solution to a critical fixed point that was found to be inaccessible within ϵ=6−d\epsilon=6-d-expansion, previously considered in E.Brezin, D.R.Nelson, A.Thiaville, Phys.Rev.B {\bf 31}, 7124 (1985), and was interpreted as a 11st-order transition.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with a figure already inside text; to appear in Phys. Rev. Lett

    Acaricidal efficiency of solar 50 % new emulsifiable concentrate formulation against the two-spotted spider mite (TSSM) Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory and greenhouse conditions

    Get PDF
    Oils are some of the most efficient and secure alternatives to synthetic fungicides, acaricides and insecticides used as pesticides for decades. Around the world, mineral oils are a potential pesticide against many pests. To provide novel active ingredients and new pesticide formulations to the pesticide industry, the major goal of this research was to formulate one of the petroleum fractions and test its acaricidal efficiency against two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae). Solar's physical features were put to the test. Then, it was prepared as an emulsifiable concentrate following the guidelines provided by specialized pesticide organizations for this kind of formulation. The novel formulation was subsequently biologically tested against T. urticae adults in the lab, and it demonstrated good acaricidal activity with an LC50 of 4548 ppm. Under greenhouse conditions, it was also tested against T. urticae immature, adults (males and females) and number of deposited eggs. There was a direct correlation for all stages between concentration, the percentage of immature and adult mortality, and the percentage of egg-hatching inhibition. In the case of the immature, 100% mortality was shown after 7 days of treatment. However, in the case of adult males and females, 100% mortality was shown after 3 days of treatment. Additionally, after 14 days from treatment, it entirely stopped egg depositing. The new formulation might be applied to manage the TSSM.

    First-Order Vortex Lattice Melting and Magnetization of YBa2_2Cu3_3O$_{7-\delta}

    Full text link
    We present the first non-mean-field calculation of the magnetization M(T)M(T) of YBa2_2Cu3_3O7−δ_{7-\delta} both above and below the flux-lattice melting temperature Tm(H)T_m(H). The results are in good agreement with experiment as a function of transverse applied field HH. The effects of fluctuations in both order parameter ψ(r)\psi({\bf r}) and magnetic induction BB are included in the Ginzburg-Landau free energy functional: ψ(r)\psi({\bf r}) fluctuates within the lowest Landau level in each layer, while BB fluctuates uniformly according to the appropriate Boltzmann factor. The second derivative (∂2M/∂T2)H(\partial^2 M/\partial T^2)_H is predicted to be negative throughout the vortex liquid state and positive in the solid state. The discontinuities in entropy and magnetization at melting are calculated to be ∼0.034 kB\sim 0.034\, k_B per flux line per layer and ∼0.0014\sim 0.0014~emu~cm−3^{-3} at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil

    Energy cost associated with vortex crossing in superconductors

    Full text link
    Starting from the Ginzburg-Landau free energy of a type II superconductor in a magnetic field we estimate the energy associated with two vortices crossing. The calculations are performed by assuming that we are in a part of the phase diagram where the lowest Landau level approximation is valid. We consider only two vortices but with two markedly different sets of boundary conditions: on a sphere and on a plane with quasi-periodic boundary conditions. We find that the answers are very similar suggesting that the energy is localised to the crossing point. The crossing energy is found to be field and temperature dependent -- with a value at the experimentally measured melting line of U×≃7.5kTm≃1.16/cL2U_\times \simeq 7.5 k T_m \simeq 1.16/c_L^2, where cLc_L is the Lindemann melting criterion parameter. The crossing energy is then used with an extension of the Marchetti, Nelson and Cates hydrodynamic theory to suggest an explanation of the recent transport experiments of Safar {{\em et al.}\ }.Comment: 15 pages, RevTex v3.0, followed by 5 postscript figure

    First order phase transition of the vortex lattice in twinned YBa2Cu3O7 single crystals in tilted magnetic fields

    Full text link
    We present an exhaustive analysis of transport measurements performed in twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid transition is first order when the magnetic field H is applied at an angle theta away from the direction of the twin planes. We show that the resistive transitions are hysteretic and the V-I curves are non-linear, displaying a characteristic s-shape at the melting line Hm(T), which scales as epsilon(theta)Hm(T,theta). These features are gradually lost when the critical point H*(theta) is approached. Above H*(theta) the V-I characteristics show a linear response in the experimentally accessible V-I window, and the transition becomes reversible. Finally we show that the first order phase transition takes place between a highly correlated vortex liquid in the field direction and a solid state of unknown symmetry. As a consequence, the available data support the scenario for a vortex-line melting rather than a vortex sublimation as recently suggested [T.Sasagawa et al. PRL 80, 4297 (1998)].Comment: 10 pages, 8 figures, submitted to PR

    Plastic energies in layered superconductors

    Full text link
    We estimate the energy cost associated with two pancake vortices colliding in a layered superconductor. It is argued that this energy sets the plastics energy scale and is the analogue of the crossing energy for vortices in the continuum case. The starting point of the calculation is the Lawrence-Doniach version of the Ginzburg-Landau free energy for type-II superconductors. The magnetic fields considered are along the c-direction and assumed to be sufficiently high that the lowest Landau level approximation is valid. For Bi-2212, where it is know that layering is very important, the results are radically different from what would have been obtained using a three-dimensional anisotropic continuum model. We then use the plastic energy for Bi-2212 to successfully explain recent results from Hellerqvist {\em et al.}\ on its longitudinal resistance.Comment: 5 Pages Revtex, 4 uuencoded postscript figure

    Superfluid-insulator transition of the Josephson junction array model with commensurate frustration

    Full text link
    We have studied the rationally frustrated Josephson-junction array model in the square lattice through Monte Carlo simulations of (2+1)(2+1)D XY-model. For frustration f=1/4f=1/4, the model at zero temperature shows a continuous superfluid-insulator transition. From the measurement of the correlation function and the superfluid stiffness, we obtain the dynamical critical exponent z=1.0z=1.0 and the correlation length critical exponent ν=0.4±0.05\nu=0.4 \pm 0.05. While the dynamical critical exponent is the same as that for cases f=0f=0, 1/2, and 1/3, the correlation length critical exponent is surprisingly quite different. When f=1/5f=1/5, we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR

    Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Time-resolved local induction measurements near to the vortex lattice order-disorder transition in optimally doped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals shows that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the co-existence of the two phases in the sample. We interpret the results in terms of supercooling of the high-field phase and the possible first order nature of the order-disorder transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected August 8th for lack of broad interest Submitted to Physical Review Letters September 10th, 199

    Density-functional theory of freezing of vortex-liquid in quasi two-dimensional superconductors

    Full text link
    We present a theory of vortex liquid-to-solid transition in homogeneous quasi 2D superconductors. The free energy is written as a functional l of density of zeroes of the fluctuating order parameter. The transition is weakly first-order and well below the Hc2(T) line. Transition temperature, discontinuities of the average Abrikosov ratio and of the average superfluid density, the Debay-Waller factor and the latent heat are in good agreement with Monte Carlo simulations. The density is only weakly modulated in the "vortex-solid" phase, consistent with the density-wave behavior.Comment: 12 pages and 1 figure available upon request, LaTex Version 2.09, submitted to Phys. Rev. Let

    Longitudinal and transverse dissipation in a simple model for the vortex lattice with screening

    Full text link
    Transport properties of the vortex lattice in high temperature superconductors are studied using numerical simulations in the case in which the non-local interactions between vortex lines are dismissed. The results obtained for the longitudinal and transverse resistivities in the presence of quenched disorder are compared with the results of experimental measurements and other numerical simulations where the full interaction is considered. This work shows that the dependence on temperature of the resistivities is well described by the model without interactions, thus indicating that many of the transport characteristics of the vortex structure in real materials are mainly a consequence of the topological configuration of the vortex structure only. In addition, for highly anisotropic samples, a regime is obtained where longitudinal coherence is lost at temperatures where transverse coherence is still finite. I discuss the possibility of observing this regime in real samples.Comment: 9 pages, 7 figures included using epsf.st
    • …
    corecore