17 research outputs found
β-Cell Autophagy Pathway and Endoplasmic Reticulum Stress Regulating-Role of Liposomal Curcumin in Experimental Diabetes Mellitus: A Molecular and Morphometric Study
Background: Autophagy can confer protection to pancreatic β-cells from the harmful effects of metabolic stress by delaying apoptosis. Curcumin (CUR) alleviates oxidative and endoplasmic reticulum (ER) stress, activates autophagy, reduces inflammation, and decreases β-cell damage in type I diabetes. Liposomal CUR (LPs-CUR) has a higher therapeutic value and better pharmacokinetics than CUR. Objectives: We determined LPs-CUR’s ability to alleviate stress, reduce β-cell damage and unraveled the mechanism underlying its protective effect using a streptozotocin (STZ)-induced type I diabetic rat model. Methods: Sprague–Dawley rats were grouped into vehicle control, STZ-diabetic (STZ 65 mg/kg), STZ-diabetic-3-MA (3-methyladenine [3-MA] 10 mg/kg b.wt), STZ. diabetic-LPs-CUR (LPs-CUR 10 mg/kg b.wt), and STZ diabetic-LPs-CUR-3-MA (LPs-CUR 10 mg/kg b.wt; 3-MA 10 mg/kg b.wt). Results: LPs-CUR significantly reduced blood glucose, oxidative stress, and cellular inflammation in the pancreatic tissue (p < 0.001). ER stress-dependent genes included ATF-6, eIF-2, CHOP, JNK, BiP, and XBP LPs-CUR significantly suppressed fold changes, while it upregulated the autophagic markers Beclin-1 and LC3-II. Conclusions: LP-CUR ameliorates β-cell damage by targeting the autophagy pathway with the regulatory miRNAs miR-137 and miR-29b, which functionally abrogates ER stress in β-cells. This study presents a new therapeutic target for managing type I diabetes using miR-137 and miR-29b
Habitat characterization and mapping on the western slopes of Mount Hermon in Lebanon
Aims: Lebanon is renowned in the Levant for its distinctive vegetation types with some biodiversity hostposts as Mount Hermon, with rare and endangered endemic plant species. We aim to present the ecological characteristics and spatial distribution of habitat types present on its western slopes through the analysis of plant communities. Study area: Mount Hermon, Lebanon. Methods: We surveyed 169 plots, each spanning an area of 314 m², from 2020 to 2023, in the district of Rashaya, calculated compositional dissimilarity using the Bray–Curtis index, conducted hierarchical clustering analysis using the unweighted pair group method with arithmetic mean (UPGMA), applied the Nonmetric Multidimensional Scaling (NMDS) method to investigate the relationship between species frequency per site and environmental parameters, and identified significant diagnostic species for each group. Results: We recorded 383 taxa, including 27 narrow endemics. Ten habitat types are described; three at the oro-Mediterranean level: hedgehog-heaths of Astragalus echinus and Noaea mucronata, hedgehog-heaths of Tanacetum densum and Astragalus cruentiflorus, cliffs of Rosularia sempervivum subsp. libanotica; three at the supra-Mediterranean level: grasslands with Eryngium glomeratum, woodlands of Quercus infectoria, Q. coccifera and Crataegus azarolus, evergreen woodlands of Q. coccifera; four at the montane level: scree deciduous woodlands of Prunus korshinskyi and Lonicera nummulariifolia, woodlands of deciduous P. korshinskyi and evergreen Q. coccifera, shrublands of Astragalus gummifer, and deciduous woodlands of Quercus look and Acer monspessulanum subsp. microphyllum. Four environmental variables exhibited significant influences in shaping vegetation composition: elevation, mean annual temperature, slope and northness. Conclusions: Five habitats are novelties proposed as sub-types for the national typology. Floristic affinities with Mount Barouk are highlighted. The nature reserve on the western slopes of Mount Hermon encompasses the majority of the identified habitats. The insights from this study and the habitat map are useful for the development of a management plan and conservation measures. Taxonomic reference: International Plant Names Index (IPNI 2023). Abbreviations: EUNIS = European Nature Information System; NMDS = nonmetric multidimensional scaling; UPGMA = unweighted pair group method with arithmetic mean; WGS84 = World Geodetic System, 1984
Weakly compatible fixed point theorem in intuitionistic fuzzy metric spaces
This study presents fundamental theorems, lemmas, and mapping definitions. There are three types of mappings: binary operators, compatible mappings, and sequentially continuous mappings. The symbols used to represent fuzzy metric spaces are intuitive. Icons were also used to prescribe a shared, linked fixed point in intuitionistic fuzzy metric space for two compatible and sequentially continuous mappings that satisfy Ï•-contractive conditions. To accomplish this, finding the intersection of both mappings was necessary
Changing dietary n-6:n-3 ratio using different oil sources affects performance, behavior, cytokines mRNA expression and meat fatty acid profile of broiler chickens
Typical formulated broiler diets are deficient in n-3 poly-unsaturated fatty acids (PUFA) due to widening n-6:n-3 PUFA ratio which could greatly affect performance, immune system of birds and, more importantly, meat quality. This study was conducted to evaluate the effect of modifying dietary n-6:n-3 PUFA ratio from plant and animal oil sources on performance, behavior, cytokine mRNA expression, antioxidative status and meat fatty acid profile of broiler chickens. Birds (n = 420) were fed 7 diets enriched with different dietary oil sources and ratios as follows: sunflower oil in control diet (C); fish oil (FO); 1:1 ratio of sunflower oil to FO (C1FO1); 3:1 ratio of sunflower oil to fish oil (C3FO1); linseed oil (LO); 1:1 ratio of sunflower oil to linseed oil (C1LO1); 3:1 ratio of sunflower oil to linseed oil (C3LO1), resulting in dietary n-6:n-3 ratios of approximately 40:1, 1.5:1, 4:1, 8:1, 1:1, 2.5:1 and 5:1, respectively. The best final body weight, feed conversion ratio as well as protein efficiency ratio of broilers were recorded in the C1FO1 and C1LO1 groups. Compared with the control group, the dressing percentage and breast and thigh yield were highest in the C1FO1 and C1LO1 groups. Narrowing the dietary n-6:n-3 ratio increased (P < 0.05) n-3 PUFA content of breast meat. Moreover, the breast meat contents of eicosapentaenoic acid and docosahexaenoic acid increased (P < 0.05) with increasing dietary FO whereas α-linolenic acid content was higher with LO supplementation. Also, enriching the diets with n-3 PUFA from FO and LO clearly decreased (P < 0.05) serum total cholesterol, triglycerides and very low-density lipoproteins and enhanced antioxidative status. The feeding frequency was decreased (P < 0.05) in the C1FO1 and C1LO1 groups. Likewise, n-3 PUFA-enriched diets enhanced the frequency of preening, wing flapping and flightiness. Animal oil source addition, compared to plant oil, to broiler diets enhanced the relative mRNA expression of interferon gamma, interleukin-1 beta, interleukin-2 and interleukin-6 genes, especially at low n-6:n-3 ratios. This study has clearly shown that narrowing n-6:n-3 ratio through the addition of FO or LO improved performance and immune response of broilers and resulted in healthy chicken meat, enriched with long chain n-3 PUFA. Keywords: Broiler, n-6:n-3 PUFA ratio, Performance, Antioxidant status, Meat, Immunit
Comprehensive Review of Cybercrime Detection Techniques
© 2020 The Authors. Published by IEEE. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1109/ACCESS.2020.3011259Cybercrimes are cases of indictable offences and misdemeanors that involve computers or communication tools as targets and commission instruments or are associated with the prevalence of computer technology. Common forms of cybercrimes are child pornography, cyberstalking, identity theft, cyber laundering, credit card theft, cyber terrorism, drug sale, data leakage, sexually explicit content, phishing, and other forms of cyber hacking. They mostly lead to a privacy breach, security violation, business loss, financial fraud, or damage in public and government properties. Thus, this study intensively reviews cybercrime detection and prevention techniques. It first explores the different types of cybercrimes and discusses their threats against privacy and security in computer systems. Then, it describes the strategies that cybercriminals may utilize in committing these crimes against individuals, organizations, and societies. It also reviews the existing techniques of cybercrime detection and prevention. It objectively discusses the strengths and critically analyzes the vulnerabilities of each technique. Finally, it provides recommendations for the development of a cybercrime detection model that can detect cybercrimes effectively compared with the existing techniques
ODCS: On-Demand Hierarchical Consistent Synchronization Approach for the IoT
An IoT data system is a time constraint in which some data needs to be serviced on or before its deadline. Distributed processing is one of the most latent sources in such systems and is considered a vital design concern. Many sources of delay in the IoT can affect the availability of data from different resources, which may cause missing data deadlines, resulting in a catastrophic effect. In fact, such systems are inherently distributed in nature and use distributed processing. The distributed processing permits different nodes to obtain the information from remote sites, which may take a long time to access the required data. Therefore, it is considered one of the most latent sources in such systems, which is considered a vital design concern. The typical recommended solution for this problem is to commit distributed transactions locally. Therefore, replication techniques are used to enhance the availability of data and consequently avoid the resulting latency. However, the use of local processing raises inconsistent periods. Therefore, this study proposes a new synchronization framework to minimize periods of temporal inconsistency. It permits several connected nodes to synchronize the shared data on demand concurrently without any need to use distributed synchronization, which consumes the system resource and raises its delay cost. The proposed framework aims to enhance the timely response of IoT real-time systems by minimizing the temporal inconsistency periods. The results indicate that the synchronization framework can be completed within a reasonable time period. They also depict improved consistency by minimizing the temporal inconsistency duration and increasing the chance of meeting critical time requirements
The Antioxidant Role of a Taurine-Enriched Diet in Combating the Immunotoxic and Inflammatory Effects of Pyrethroids and/or Carbamates in Oreochromis niloticus
Indiscriminate use of insecticides is a major concern due to its ubiquitous occurrence and potential toxicity to aquatic animals. This study investigated the adverse effects of lambda-cyhalothrin (LCT; C23H19ClF3NO3) and methomyl (MTM; C5H10N2O2S) on immune system modulations and growth performance of juvenile fishes. The supportive role of a taurine (TUR; C2H7NO3S)-supplemented diet was also evaluated. Juvenile O. niloticus fishes were exposed to LCT (0.079 µg/L), MTM (20.39 µg/L), or both in water and were fed on a basal diet only or taurine-supplemented basal diet. Exposure to LCT and MTM retarded growth and increased mortality rate. LCT and MTM reduced antioxidant enzyme activities (superoxide dismutase and glutathione peroxidase) and innate and humoral immunity but upregulated interleukin and chemokine expressions. Moreover, exposure to LCT and MTM elevated 8-OHdG levels and increased the mortality of Oreochromis niloticus after the experimental bacterial challenge. The TUR-enriched diet enhanced antioxidant enzymes and acted as a growth promoter and anti-inflammatory agent. TUR can modify innate and adaptive immune responses. Furthermore, TUR supplementation is a beneficial additive candidate for mitigating LCT and MTM toxicities mixed with O. niloticus aquafeed
Chitosan-Stabilized Selenium Nanoparticles and Metformin Synergistically Rescue Testicular Oxidative Damage and Steroidogenesis-Related Genes Dysregulation in High-Fat Diet/Streptozotocin-Induced Diabetic Rats
Background: this study examined the metformin (MF) and/or chitosan stabilized selenium nanoparticles (CH-SeNPs) efficacy to alleviate the male reproductive function impairment in a high-fat diet feed with low-dose streptozotocin (HFD/STZ) induced type 2 diabetes mellitus (T2DM) diabetic rat model. Methods: control non-diabetic, HFD/STZ diabetic, HFD/STZ+MF, HFD/STZ+CH-SeNPs, and HFD/STZ+MF+CH-SeNPs rat groups were used. After 60 days, semen evaluation, hormonal assay, enzymatic antioxidant, lipid peroxidation, testis histopathology, and the steroidogenesis-related genes mRNA expressions were assessed. Results: in the HFD/STZ diabetic rats, sperm count and motility, male sexual hormones, and testicular antioxidant enzymes were significantly reduced. However, sperm abnormalities and testicular malondialdehyde were significantly incremented. The steroidogenesis-related genes, including steroidogenic acute regulatory protein (StAr), cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3), and the mitochondrial biogenesis related genes, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGCα) and sirtuin (SIRT), were significantly downregulated in the HFD/STZ diabetic rats. However, CYP19A1mRNA expression was significantly upregulated. In contrast, MF and/or CH-SeNPs oral dosing significantly rescued the T2DM-induced sperm abnormalities, reduced sperm motility, diminished sexual hormones level, testicular oxidative damage, and steroidogenesis-related genes dysregulation. In the MF and CH-SeNP co-treated group, many of the estimated parameters differ considerably from single MF or CH-SeNPs treated groups. Conclusions: the MF and CH-SeNPs combined treatment could efficiently limit the diabetic complications largely than monotherapeutic approach and they could be considered a hopeful treatment option in the T2DM
Effect of Dietary Modulation of Selenium Form and Level on Performance, Tissue Retention, Quality of Frozen Stored Meat and Gene Expression of Antioxidant Status in Ross Broiler Chickens
This study compares between different selenium forms (sodium selenite; SeS, selenomethionine; Met-Se or nano-Se) and levels on growth performance, Se retention, antioxidative potential of fresh and frozen meat, and genes related to oxidative stress in Ross broilers. Birds (n = 450) were randomly divided into nine experimental groups with five replicates in each and were fed diets supplemented with 0.3, 0.45, and 0.6 mg Se/kg as (SeS, Met-Se), or nano-Se. For overall growth performance, dietary inclusion of Met-Se or nano-Se significantly increased (p < 0.05) body weight gain and improved the feed conversion ratio of Ross broiler chicks at the level of 0.45 and 0.6 mg/kg when compared with the group fed the same level of SeS. Se sources and levels significantly affected (p < 0.05) its concentrations in breast muscle, liver, and serum. Moreover, Se retention in muscle was higher (p < 0.05) after feeding of broiler chicks on a diet supplemented with Met-Se or nano-Se compared to the SeS group, especially at 0.6 mg/kg. Additionally, higher dietary levels from Met-Se or nano-Se significantly reduced oxidative changes in breast and thigh meat in the fresh state and after a four-week storage period and increased muscular pH after 24 h of slaughter. Also, broiler’s meat in the Met-Se and nano-Se groups showed cooking loss and lower drip compared to the SeS group (p < 0.05). In the liver, the mRNA expression levels of glutathione peroxidase, superoxide dismutase, and catalase were elevated by increasing dietary Se levels from Met-Se and nano-Se groups up to 0.6 mg/kg when compared with SeS. Therefore, dietary supplementation with 0.6 mg/kg Met-Se and nano-Se improved growth performance and were more efficiently retained than with SeS. Both sources of selenium (Met-Se and nano-Se) downregulated the oxidation processes of meat during the first four weeks of frozen storage, especially in thigh meat, compared with an inorganic source. Finally, dietary supplementation of Met-Se and nano-Se produced acceptable Se levels in chicken meat offered for consumers
Promising Role of Growth Hormone-Boosting Peptide in Regulating the Expression of Muscle-Specific Genes and Related MicroRNAs in Broiler Chickens
Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken’s growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 μg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 μg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 μg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 μg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 μg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 μg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 μg/kg GHBP group. Overall, our findings indicated that administration of 200 μg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth