2,121 research outputs found

    Ultracold Neutral Plasmas

    Full text link
    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach 101110^{11} cm−3^{-3}. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr+^+ 2S_1/2−>2P_1/2{^2S\_{1/2}} -> {^2P\_{1/2}} transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas

    Full text link
    Absorption imaging and spectroscopy can probe the dynamics of an ultracold neutral plasma during the first few microseconds after its creation. Quantitative analysis of the data, however, is complicated by the inhomogeneous density distribution, expansion of the plasma, and possible lack of global thermal equilibrium for the ions. In this article we describe methods for addressing these issues. Using simple assumptions about the underlying temperature distribution and ion motion, the Doppler-broadened absorption spectrum obtained from plasma images can be related to the average temperature in the plasma.Comment: 14 pages, 8 figure

    Quantum Chessboards in the Deuterium Molecular Ion

    Get PDF
    We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)Comment: 12 pages, 5 figure

    Testing Scalar-Tensor Gravity with Gravitational-Wave Observations of Inspiralling Compact Binaries

    Full text link
    Observations of gravitational waves from inspiralling compact binaries using laser-interferometric detectors can provide accurate measures of parameters of the source. They can also constrain alternative gravitation theories. We analyse inspiralling compact %binaries in the context of the scalar-tensor theory of Jordan, Fierz, Brans and Dicke, focussing on the effect on the inspiral of energy lost to dipole gravitational radiation, whose source is the gravitational self-binding energy of the inspiralling bodies. Using a matched-filter analysis we obtain a bound on the coupling constant ωBD\omega_{\rm BD} of Brans-Dicke theory. For a neutron-star/black-hole binary, we find that the bound could exceed the current bound of ωBD>500\omega_{\rm BD}>500 from solar-system experiments, for sufficiently low-mass systems. For a 0.7M⊙0.7 M_\odot neutron star and a 3M⊙3 M_\odot black hole we find that a bound ωBD≈2000\omega_{\rm BD} \approx 2000 is achievable. The bound decreases with increasing black-hole mass. For binaries consisting of two neutron stars, the bound is less than 500 unless the stars' masses differ by more than about 0.5M⊙0.5 M_\odot. For two black holes, the behavior of the inspiralling binary is observationally indistinguishable from its behavior in general relativity. These bounds assume reasonable neutron-star equations of state and a detector signal-to-noise ratio of 10.Comment: 10 pages, (3 figures upon request), WUGRAV-94-

    On spontaneous scalarization

    Full text link
    We study in the physical frame the phenomenon of spontaneous scalarization that occurs in scalar-tensor theories of gravity for compact objects. We discuss the fact that the phenomenon occurs exactly in the regime where the Newtonian analysis indicates it should not. Finally we discuss the way the phenomenon depends on the equation of state used to describe the nuclear matter.Comment: 41 pages, RevTex, 10 ps figures, submitted to Phys. Rev.

    Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model

    Get PDF
    The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to Phys. Rev.

    Spectroscopy of 28^{28}Na: shell evolution toward the drip line

    Get PDF
    Excited states in 28^{28}Na have been studied using the ÎČ\beta-decay of implanted 28^{28}Ne ions at GANIL/LISE as well as the in-beam Îł\gamma-ray spectroscopy at the NSCL/S800 facility. New states of positive (Jπ^{\pi}=3,4+^+) and negative (Jπ^{\pi}=1-5−^-) parity are proposed. The former arise from the coupling between 0d_5/2\_{5/2} protons and a 0d_3/2\_{3/2} neutron, while the latter are due to couplings with 1p_3/2\_{3/2} or 0f_7/2\_{7/2} neutrons. While the relative energies between the Jπ^{\pi}=1-4+^+ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between 26^{26}F and 30^{30}Al. This points to a possible change in the proton-neutron 0d_5/2\_{5/2}-0d_3/2\_{3/2} effective interaction when moving from stability to the drip line. The presence of Jπ^{\pi}=1-4−^- negative parity states around 1.5 MeV as well as of a candidate for a Jπ^{\pi}=5−^- state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the 0f_7/2\_{7/2} and 1p_3/2\_{3/2} levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the 26^{26}F and 25^{25}O nuclei.Comment: Exp\'erience GANIL/LISE et NSCL/S80

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure
    • 

    corecore