2,121 research outputs found
Ultracold Neutral Plasmas
Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near
the ionization threshold. Through the application of atomic physics techniques
and diagnostics, these experiments stretch the boundaries of traditional
neutral plasma physics. The electron temperature in these plasmas ranges from
1-1000 K and the ion temperature is around 1 K. The density can approach
cm. Fundamental interest stems from the possibility of
creating strongly-coupled plasmas, but recombination, collective modes, and
thermalization in these systems have also been studied. Optical absorption
images of a strontium plasma, using the Sr
transition at 422 nm, depict the density profile of the plasma, and probe
kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum
measures the ion velocity distribution, which gives an accurate measure of the
ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr
We report the use of photoassociative spectroscopy to determine the ground
state s-wave scattering lengths for the main bosonic isotopes of strontium,
86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned
by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the
transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the
scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of
-1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Absorption Imaging and Spectroscopy of Ultracold Neutral Plasmas
Absorption imaging and spectroscopy can probe the dynamics of an ultracold
neutral plasma during the first few microseconds after its creation.
Quantitative analysis of the data, however, is complicated by the inhomogeneous
density distribution, expansion of the plasma, and possible lack of global
thermal equilibrium for the ions. In this article we describe methods for
addressing these issues. Using simple assumptions about the underlying
temperature distribution and ion motion, the Doppler-broadened absorption
spectrum obtained from plasma images can be related to the average temperature
in the plasma.Comment: 14 pages, 8 figure
Quantum Chessboards in the Deuterium Molecular Ion
We present a new algorithm for vibrational control in deuterium molecules
that is feasible with current experimental technology. A pump mechanism is used
to create a coherent superposition of the D2+ vibrations. A short, intense
infrared control pulse is applied after a chosen delay time to create selective
interferences. A `chessboard' pattern of states can be realized in which a set
of even- or odd-numbered vibrational states can be selectively annihilated or
enhanced. A technique is proposed for experimental realization and observation
of this effect using 5 fs pulses of 790 nm radiation, with intermediate
intensity (5e13 W/cm2)Comment: 12 pages, 5 figure
Testing Scalar-Tensor Gravity with Gravitational-Wave Observations of Inspiralling Compact Binaries
Observations of gravitational waves from inspiralling compact binaries using
laser-interferometric detectors can provide accurate measures of parameters of
the source. They can also constrain alternative gravitation theories. We
analyse inspiralling compact %binaries in the context of the scalar-tensor
theory of Jordan, Fierz, Brans and Dicke, focussing on the effect on the
inspiral of energy lost to dipole gravitational radiation, whose source is the
gravitational self-binding energy of the inspiralling bodies. Using a
matched-filter analysis we obtain a bound on the coupling constant of Brans-Dicke theory. For a neutron-star/black-hole binary, we find that
the bound could exceed the current bound of from
solar-system experiments, for sufficiently low-mass systems. For a neutron star and a black hole we find that a bound
is achievable. The bound decreases with
increasing black-hole mass. For binaries consisting of two neutron stars, the
bound is less than 500 unless the stars' masses differ by more than about . For two black holes, the behavior of the inspiralling binary is
observationally indistinguishable from its behavior in general relativity.
These bounds assume reasonable neutron-star equations of state and a detector
signal-to-noise ratio of 10.Comment: 10 pages, (3 figures upon request), WUGRAV-94-
On spontaneous scalarization
We study in the physical frame the phenomenon of spontaneous scalarization
that occurs in scalar-tensor theories of gravity for compact objects. We
discuss the fact that the phenomenon occurs exactly in the regime where the
Newtonian analysis indicates it should not. Finally we discuss the way the
phenomenon depends on the equation of state used to describe the nuclear
matter.Comment: 41 pages, RevTex, 10 ps figures, submitted to Phys. Rev.
Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model
The interference of charge-changing interactions, weaker than the V-A
Standard Model (SM) interaction and having a different Lorentz structure, with
that SM interaction, can, in principle, produce effects near the end point of
the Tritium beta decay spectrum which are of a different character from those
produced by the purely kinematic effect of neutrino mass expected in the
simplest extension of the SM. We show that the existence of more than one mass
eigenstate can lead to interference effects at the end point that are stronger
than those occurring over the entire spectrum. We discuss these effects both
for the special case of Dirac neutrinos and the more general case of Majorana
neutrinos and show that, for the present precision of the experiments, one
formula should suffice to express the interference effects in all cases.
Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes
in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to
Phys. Rev.
Spectroscopy of Na: shell evolution toward the drip line
Excited states in Na have been studied using the -decay of
implanted Ne ions at GANIL/LISE as well as the in-beam -ray
spectroscopy at the NSCL/S800 facility. New states of positive
(J=3,4) and negative (J=1-5) parity are proposed. The
former arise from the coupling between 0d protons and a 0d
neutron, while the latter are due to couplings with 1p or 0f
neutrons. While the relative energies between the J=1-4 states are
well reproduced with the USDA interaction in the N=17 isotones, a progressive
shift in the ground state binding energy (by about 500 keV) is observed between
F and Al. This points to a possible change in the proton-neutron
0d-0d effective interaction when moving from stability to the
drip line. The presence of J=1-4 negative parity states around 1.5
MeV as well as of a candidate for a J=5 state around 2.5 MeV give
further support to the collapse of the N=20 gap and to the inversion between
the 0f and 1p levels below Z=12. These features are discussed
in the framework of Shell Model and EDF calculations, leading to predicted
negative parity states in the low energy spectra of the F and O
nuclei.Comment: Exp\'erience GANIL/LISE et NSCL/S80
Correlation dynamics between electrons and ions in the fragmentation of D molecules by short laser pulses
We studied the recollision dynamics between the electrons and D ions
following the tunneling ionization of D molecules in an intense short pulse
laser field. The returning electron collisionally excites the D ion to
excited electronic states from there D can dissociate or be further
ionized by the laser field, resulting in D + D or D + D,
respectively. We modeled the fragmentation dynamics and calculated the
resulting kinetic energy spectrum of D to compare with recent experiments.
Since the recollision time is locked to the tunneling ionization time which
occurs only within fraction of an optical cycle, the peaks in the D kinetic
energy spectra provides a measure of the time when the recollision occurs. This
collision dynamics forms the basis of the molecular clock where the clock can
be read with attosecond precision, as first proposed by Corkum and coworkers.
By analyzing each of the elementary processes leading to the fragmentation
quantitatively, we identified how the molecular clock is to be read from the
measured kinetic energy spectra of D and what laser parameters be used in
order to measure the clock more accurately.Comment: 13 pages with 14 figure
- âŠ