153 research outputs found

    Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Biodiversity 43 (2013): 237-241, doi:10.1007/s12526-013-0151-x.Despite the ubiquitous role sponges play in reef ecosystem dynamics, little is known about population-level connectivity in these organisms. The general field of population genetics in sponges remains in its infancy. To date, microsatellite markers have only been developed for few sponge species and no sponge population genetics studies using microsatellites have been conducted in the Red Sea. Here, with the use of next-generation sequencing, we characterize 12 novel polymorphic loci for the common reef sponge, Stylissa carteri. The number of alleles per loci ranged between three and eight. Observed heterozygosity frequencies (Ho) ranged from 0.125 to 0.870, whereas expected (He) heterozygosity frequencies ranged from 0.119 to 0.812. Only one locus showed consistent deviations from Hardy-Weinberg equilibrium (HWE) in both populations and two loci consistently showed the possible presence of null alleles. No significant linkage disequilibrium was detected for any pairs of loci. These microsatellites will be of use for numerous ecological studies focused on this common and abundant sponge.This work was funded by the King Abdullah University of Science and Technology

    Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Genetics Resources 5 (2013): 561-563, doi:10.1007/s12686-012-9852-x.A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0.292 to 0.95. Six of these loci showed significant deviations from Hardy–Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0.701 ± 0.380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations.This research was funded by King Abdullah University of Science and Technology (KAUST), Saudi Arabia

    Microsatellites reveal genetic homogeneity among outbreak populations of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia's Great Barrier Reef

    Get PDF
    Specific patterns in the initiation and spread of reef-wide outbreaks of crown-of-thorns starfish are important, both to understand potential causes (or triggers) of outbreaks and to develop more effective and highly targeted management and containment responses. Using analyses of genetic diversity and structure (based on 17 microsatellite loci), this study attempted to resolve the specific origin for recent outbreaks of crown-of-thorns on Australia's Great Barrier Reef (GBR). We assessed the genetic structure amongst 2705 starfish collected from 13 coral reefs in four regions that spanned -1000 km of the GBR. Our results indicate that populations sampled across the full length of the GBR are genetically homogeneous (G'(ST) = -0.001; p = 0.948) with no apparent genetic structure between regions. Approximate Bayesian computational analyses suggest that all sampled populations had a common origin and that current outbreaking populations of crown-of-thorns starfish (CoTS) in the Swains are not independent of outbreak populations in the northern GBR. Despite hierarchical sampling and large numbers of CoTS genotyped from individual reefs and regions, limited genetic structure meant we were unable to determine a putative source population for the current outbreak of CoTS on the GBR. The very high genetic homogeneity of sampled populations and limited evidence of inbreeding indicate rapid expansion in population size from multiple, undifferentiated latent populations

    Demographic histories shape population genomics of the common coral grouper (Plectropomus leopardus)

    Get PDF
    Many coral reef fishes display remarkable genetic and phenotypic variation across their geographic ranges. Understanding how historical and contemporary processes have shaped these patterns remains a focal question in evolutionary biology since they reveal how diversity is generated and how it may respond to future environmental change. Here, we compare the population genomics and demographic histories of a commercially and ecologically important coral reef fish, the common coral grouper (Plectropomus leopardus [Lacepede 1802]), across two adjoining regions (the Great Barrier Reef; GBR, and the Coral Sea, Australia) spanning approximately 14 degrees of latitude and 9 degrees of longitude. We analysed 4548 single nucleotide polymorphism (SNP) markers across 11 sites and show that genetic connectivity between regions is low, despite their relative proximity (similar to 100km) and an absence of any obvious geographic barrier. Inferred demographic histories using 10,479 markers suggest that the Coral Sea population was founded by a small number of GBR individuals and that divergence occurred similar to 190 kya under a model of isolation with asymmetric migration. We detected population expansions in both regions, but estimates of contemporary effective population sizes were approximately 50% smaller in Coral Sea sites, which also had lower genetic diversity. Our results suggest that P. leopardus in the Coral Sea have experienced a long period of isolation that precedes the recent glacial period (similar to 10-120 kya) and may be vulnerable to localized disturbances due to their relative reliance on local larval replenishment. While it is difficult to determine the underlying events that led to the divergence of the Coral Sea and GBR lineages, we show that even geographically proximate populations of a widely dispersed coral reef fish can have vastly different evolutionary histories

    Seascape and life-history traits do not predict self-recruitment in a coral reef fish

    Get PDF
    The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibling reconstruction analyses based on 23 microsatellite DNA loci. We found that, contrary to previous findings in this system, self-recruitment (SR) was virtually absent at both the reef (0.4–0.5% at 0.15 km2) and the lagoon scale (0.6–0.8% at approx. 700 km2). While approximately 25% of the collected juveniles were identified as potential siblings, the majority of sibling pairs were sampled from separate reefs. Integrating our findings with earlier research from the same system suggests that geographical setting and life-history traits alone are not suitable predictors of SR and that high levels of localized recruitment are not universal in coral reef fishes

    The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests

    Get PDF
    The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: Franco, Lida M.. Universidad de Ibagué; ColombiaFil: Bozinovic, Francisco. Pontificia Universidad Católica de Chile; ChileFil: Quintero Galvis, Julian F.. Universidad Austral de Chile; ChileFil: Mejías, Carlos. Universidad Austral de Chile; ChileFil: Amico, Guillermo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Vazquez, Miriam Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sabat, Pablo. Universidad de Chile; ChileFil: Sánchez Hernández, Juan C.. Universidad de Castilla-La Mancha; EspañaFil: Watson, David M.. Charles Sturt University; AustraliaFil: Saenz Agudelo, Pablo. Universidad Austral de Chile; ChileFil: Nespolo, Roberto F.. Universidad Austral de Chile; Chil

    Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    Get PDF
    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60-220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to similar to 250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of similar to 110 km for P. maculatus and similar to 190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations

    Larval dispersal and fishing pressure influence recruitment in a coral reef fishery

    Get PDF
    Understanding larval connectivity patterns in exploited fishes is a fundamental prerequisite for developing effective management strategies and assessing the vulnerability of a fishery to recruitment overfishing and localised extinction. To date, however, researchers have not considered how regional variations in fishing pressure also influence recruitment. We used genetic parentage analyses and modelling to infer the dispersal patterns of bumphead parrotfish Bolbometopon muricatum larvae in the Kia fishing grounds, Isabel Province, Solomon Islands. We then extrapolated our Kia dispersal model to a regional scale by mapping the available nursery and adult habitat for B. muricatum in six regions in the western Solomon Islands, and estimated the relative abundance of adult B. muricatum populations in each of these regions based on available adult habitat and historical and current fishing pressure. Parentage analysis identified 67 juveniles that were the offspring of parents sampled in the Kia fishing grounds. A fitted larval dispersal kernel predicted that 50% of larvae settled within 30 km of their parents, and 95% settled within 85 km of their parents. After accounting for unsampled adults, our model predicted that 34% of recruitment to the Kia fishery was spawned locally. Extrapolating the spatial resolution of the model revealed that a high proportion of the larvae recruiting into the Kia fishing grounds came from nearby regions that had abundant adult populations. Other islands in the archipelago provided few recruits to the Kia fishing grounds, reflecting the greater distances to these islands and lower adult abundances in some regions. Synthesis and applications. This study shows how recruitment into a coral reef fishery is influenced by larval dispersal patterns and regional variations in historical fishing pressure. The scales of larval connectivity observed for bumphead parrotfish indicate that recruitment overfishing is unlikely if there are lightly exploited reefs up to 85 km away from a heavily fished region, and that small (<1 km2) marine-protected areas (MPAs) are insufficient to protect this species. We recommend greater efforts to understand the interactions between larval dispersal and gradients of fishing pressure, as this will enable the development of tailored fisheries management strategies

    Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Genetics Resources 5 (2013): 561-563, doi:10.1007/s12686-012-9852-x.A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0.292 to 0.95. Six of these loci showed significant deviations from Hardy–Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0.701 ± 0.380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations.This research was funded by King Abdullah University of Science and Technology (KAUST), Saudi Arabia

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh
    • …
    corecore