4 research outputs found

    OmpA protein sequence-based typing and virulence-associated gene profiles of Pasteurella multocida isolates associated with bovine haemorrhagic septicaemia and porcine pneumonic pasteurellosis in Thailand

    No full text
    Abstract Background Pasteurella multocida is a Gram-negative bacterium that causes economically significant infections of a broad range of animal species. Pneumonic and septicaemic pasteurellosis caused by this bacterium remain important problems in pigs, cattle, and water buffaloes in Thailand. The aim of this study was to characterise the virulence-associated gene profiles and to develop an OmpA molecular typing scheme for classifying 191 bovine and porcine isolates of P. multocida collected between 1989 and 2012 in Thailand using polymerase chain reactions (PCRs), nucleotide sequencing, and sequence and structural bioinformatics analyses. Results PCR screening successfully characterised the profiles of 25 virulence-associated genes in all isolates. The gene profiles separated these isolates into bovine and porcine clusters based on eight genes (hgbB, hsf1, tadD, nanH, pfhA, plpE, pmHAS, and tbpA). Phylogenetic analyses of the nucleotide and protein sequences corresponding to the ompA gene, which encodes a major outer membrane surface protein, showed two major bovine and porcine clusters. Structural prediction and analysis of the dN/dS ratio revealed four hypervariable extracellular loops of the OmpA transmembrane domains. These four loops were used to develop an OmpA typing scheme. This scheme classified 186 isolates into five major loop sequence types (LST8, LST12, LST15, LST18, and LST19), consistent with the phylogenetic results. The loop regions of the bovine isolates were predicted to be more antigenic than those of the porcine isolates. Thus, molecular evolution of the OmpA proteins could be used to classify P. multocida isolates into different capsular types, host types, and, possibly, pathogenicity levels. Conclusions Together with the virulence-associated gene profiles, the typing reported in this work provides a better understanding of P. multocida virulence. Effective monitoring and potential strain-specific subunit vaccines could be developed based on these loop oligopeptides

    Additional file 2: Table S2. of OmpA protein sequence-based typing and virulence-associated gene profiles of Pasteurella multocida isolates associated with bovine haemorrhagic septicaemia and porcine pneumonic pasteurellosis in Thailand

    No full text
    Information of 191 P. multocida isolates associated with diseased pigs, cattle and water buffaloes in Thailand collected from 1989 to 2012. These isolates were collected and maintained by the National Institute of Animal Health, Department of Livestock, Ministry of Agriculture and Cooperatives. Each isolate was named with two-letter code. (DOCX 38 kb

    Additional file 1: Table S1. of OmpA protein sequence-based typing and virulence-associated gene profiles of Pasteurella multocida isolates associated with bovine haemorrhagic septicaemia and porcine pneumonic pasteurellosis in Thailand

    No full text
    Clustering summary of 186 bovine and porcine isolates of P. multocida collected from Thailand and 41 strains from the NCBI database. Three clustering methods were shown including nucleotide and protein phylogenetic analyses, and the OmpA protein sequence-based typing using four extracellular loop sequence types (LSTs) of the transmembrane domain. The LST types in the last column were created by the combination of different types of the four extracellular loops 1, 2, 3, and 4. DNA and protein cluster codes correlated with those in Fig. 2a and b. (DOCX 65 kb
    corecore