18 research outputs found

    Latent variable models for understanding user behavior in software applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 147-157).Understanding user behavior in software applications is of significant interest to software developers and companies. By having a better understanding of the user needs and usage patterns, the developers can design a more efficient workflow, add new features, or even automate the user's workflow. In this thesis, I propose novel latent variable models to understand, predict and eventually automate the user interaction with a software application. I start by analyzing users' clicks using time series models; I introduce models and inference algorithms for time series segmentation which are scalable to large-scale user datasets. Next, using a conditional variational autoencoder and some related models, I introduce a framework for automating the user interaction with a software application. I focus on photo enhancement applications, but this framework can be applied to any domain where segmentation, prediction and personalization is valuable. Finally, by combining sequential Monte Carlo and variational inference, I propose a new inference scheme which has better convergence properties than other reasonable baselines.by Ardavan Saeedi.Ph. D

    Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion

    Get PDF
    The predictive performance of supervised learning algorithms depends on the quality of labels. In a typical label collection process, multiple annotators provide subjective noisy estimates of the "truth" under the influence of their varying skill-levels and biases. Blindly treating these noisy labels as the ground truth limits the accuracy of learning algorithms in the presence of strong disagreement. This problem is critical for applications in domains such as medical imaging where both the annotation cost and inter-observer variability are high. In this work, we present a method for simultaneously learning the individual annotator model and the underlying true label distribution, using only noisy observations. Each annotator is modeled by a confusion matrix that is jointly estimated along with the classifier predictions. We propose to add a regularization term to the loss function that encourages convergence to the true annotator confusion matrix. We provide a theoretical argument as to how the regularization is essential to our approach both for the case of single annotator and multiple annotators. Despite the simplicity of the idea, experiments on image classification tasks with both simulated and real labels show that our method either outperforms or performs on par with the state-of-the-art methods and is capable of estimating the skills of annotators even with a single label available per image.Comment: CVPR 2019, code snippets include

    Generative Method to Discover Genetically Driven Image Biomarkers

    Get PDF
    Abstract. We present a generative probabilistic approach to discovery of disease subtypes determined by the genetic variants. In many diseases, multiple types of pathology may present simultaneously in a patient, making quantification of the disease challenging. Our method seeks common co-occurring image and genetic patterns in a population as a way to model these two different data types jointly. We assume that each patient is a mixture of multiple disease subtypes and use the joint generative model of image and genetic markers to identify disease subtypes guided by known genetic influences. Our model is based on a variant of the so-called topic models that uncover the latent structure in a collection of data. We derive an efficient variational inference algorithm to extract patterns of co-occurrence and to quantify the presence of heterogeneous disease processes in each patient. We evaluate the method on simulated data and illustrate its use in the context of Chronic Obstructive Pulmonary Disease (COPD) to characterize the relationship between image and genetic signatures of COPD subtypes in a large patient cohort

    Nonparametric Bayesian models for Markov jump processes

    No full text
    Markov jump processes (MJPs) have been used as models in various fields such as disease progression, phylogenetic trees, and communication networks. The main motivation behind this thesis is the application of MJPs to data modeled as having complex latent structure. In this thesis we propose a nonparametric prior, the gamma-exponential process (GEP), over MJPs. Nonparametric Bayesian models have recently attracted much attention in the statistics community, due to their flexibility, adaptability, and usefulness in analyzing complex real world datasets. The GEP is a prior over infinite rate matrices which characterize an MJP; this prior can be used in Bayesian models where an MJP is imposed on the data but the number of states of the MJP is unknown in advance. We show that the GEP model we propose has some attractive properties such as conjugacy and simple closed-form predictive distributions. We also introduce the hierarchical version of the GEP model; sharing statistical strength can be considered as the main motivation behind the hierarchical model. We show that our hierarchical model admits efficient inference algorithms. We introduce two inference algorithms: 1) a “basic” particle Markov chain Monte Carlo (PMCMC) algorithm which is an MCMC algorithm with sequences proposed by a sequential Monte Carlo (SMC) algorithm; 2) a modified version of this PMCPC algorithm with an “improved” SMC proposal. Finally, we demonstrate the algorithms on the problems of estimating disease progression in multiple sclerosis and RNA evolutionary modeling. In both domains, we found that our model outperformed the standard rate matrix estimation approach.Science, Faculty ofStatistics, Department ofGraduat
    corecore