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Abstract. We present a generative probabilistic approach to discovery
of disease subtypes determined by the genetic variants. In many diseases,
multiple types of pathology may present simultaneously in a patient,
making quantification of the disease challenging. Our method seeks com-
mon co-occurring image and genetic patterns in a population as a way
to model these two different data types jointly. We assume that each
patient is a mixture of multiple disease subtypes and use the joint gen-
erative model of image and genetic markers to identify disease subtypes
guided by known genetic influences. Our model is based on a variant of
the so-called topic models that uncover the latent structure in a collection
of data. We derive an efficient variational inference algorithm to extract
patterns of co-occurrence and to quantify the presence of heterogeneous
disease processes in each patient. We evaluate the method on simulated
data and illustrate its use in the context of Chronic Obstructive Pul-
monary Disease (COPD) to characterize the relationship between image
and genetic signatures of COPD subtypes in a large patient cohort.

1 Introduction

We propose and demonstrate a joint model of image and genetic variation associ-
ated with a disease. Our goal is to identify disease-specific image biomarkers that
are also correlated with side information, such as the genetic code or other bio-
logically relevant indicators. Our approach targets diseases that can be thought
of as a superposition of different processes, or subtypes, that are subject to
genetic influences and are often present simultaneously in the same patient. Our
motivation comes from a study of the Chronic Obstructive Pulmonary Disease
(COPD), but the resulting model is applicable to a wide range of heterogeneous
disorders.

COPD is a lung disease characterized by chronic and progressive difficulty
in breathing; it is one of the leading causes of death in the United States [11].
COPD is often associated with emphysema, i.e., the destruction of lung air sacs,
and an airway disease, which is caused by inflammation of the airways. In this
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paper, we focus on modeling emphysema based on lung CT images. Emphysema
exhibits many subtypes. It is common for several subtypes to co-occur in the
same lung [13]. Genetic factors play an important role in COPD [11], and it is
believed that variability of COPD is driven by genetics [5]. We therefore aim
to quantify the lung tissue heterogeneity that is associated with the genetic
variations in the patient cohort.

CT imaging is used to measure the extent of COPD, and particularly of
emphysema. The standard approach to quantifying emphysema is to use the
volume of sub-threshold intensities in the lung as a surrogate measure for the
volume of emphysema [6]. More recently, histograms [10], texture descriptors [15],
and combination of both [16] have been proposed to classify subtypes of emphy-
sema based on training sets of CT patches labeled by clinical experts. While
histograms and intensity features have been shown to be important for emphy-
sema characterization, the clinical definitions of disease subtypes are based on
visual assessment of CT images by clinicians and are not necessarily genetically
driven. In prior studies, association between image and genetic variants was
established as a separate stage of analysis and was not taken into account when
extracting relevant biomarkers from images.

Most methodological innovations in joint analysis of imaging and genetics
have used image data as an intermediate phenotype to enhance the discovery of
relevant genetic markers in the context of neuro-degenerative diseases [3]. In the
context of COPD, Castaldi et al. [5] used local histograms to measure distinct
emphysema patters and performed genome-wide association study (GWAS) to
validate their results. In contrast to prior research in imaging genetics, we use
the results of genetic analysis to help us characterize image patterns associated
with the disease, in effect reversing the direction of analysis for disorders with
high anatomical heterogeneity and available information on genetic influences.
We model image and genetic variations jointly, and demonstrate efficient infer-
ence of co-occurrence pattern, as indicated by our results.

In this paper, we assume that a few important genetic markers associated
with the disease are available. We build a generative model that captures the
commonly occurring image and genetic patterns in a population. Each subject
is modeled as a sample from the population-wide collection of joint image and
genetic patterns. This abstraction at the population level reveals the associations
between image-based and genetic subtypes and uses genetic information to guide
the definition of image biomarkers for distinct disease subtypes. Our method is
based on a non-parametric topic modeling [17], originally developed in machine
learning for characterizing structure of documents. We build an analogy between
topics contributing words to a document and disease subtypes contributing local
image patterns and minor alleles to a patient. The closest work to our approach is
by Batmanghelich et al. [2] who developed a topic model for global histograms of
the lung intensity values. The model did not include local image patterns; geno-
type data was not considered as part of the model. In contrast, our topic model
builds on rich local descriptors and integrates image and genetic information
into a single framework. Our approach can be readily extended to include other
clinical or demographic data.
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We evaluate the method on a synthetic data set that matches our clinical
assumptions, demonstrating substantial benefits of using a hierarchical popula-
tion model to capture common patterns of heterogeneity in the image phenotype
and in the genetic code. We also show that the genetic data as side information
boosts the performance of the method compared to the baselines and a variant
of our model without the genetic data. Finally, we illustrate an application of
our method to a study of COPD and identify common emphysema subtypes
associated with genetic factors implicated in COPD.

Table 1. Model variables and Variational Bayes (VB) estimates used throughout the
paper.

Model Variables

Isn image descriptor of supervoxel n in subject s

Gsm genetic location of minor allele m in subject s

zI
sn subject-specific topic that generates super-voxel n in subject s,

1 ≤ zI
s,n ≤ T

zG
sm subject-specific topic that generates minor allele m in subject s,

1 ≤ zG
s,m ≤ T

cst population-level topic that serves as subject-specific topic t in
subject s, 1 ≤ cst ≤ K

v parameter vector that determines the stick-breaking proportions
of topics in a population template

πs parameter vector that determines the stick-breaking proportions
of topics in subject s

(μk, Σk) mean and covariance matrix of image descriptors for
population-level topic k

βk frequency of different locations in genetic signatures for
population-level topic k

ω hyper-parameters of the Beta prior for v

α hyper-parameters for the Beta prior for πs

ηI hyper-parameters of the Normal-Inverse-Wishart prior for
(μk, Σk)

ηG hyper-parameters of the Dirichlet prior for βk

VB Estimates

(μ̂k, Σ̂k) mean and covariance of image descriptors for population-level
topic k

β̂k frequency of different locations in genetic signatures for
population-level topic k
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2 Model

In this section, we describe the generative model for image and genetic data based
on a population-wide common patterns that are instantiated in each subject.
Our notation is summarized in Table 1 and the generative process is illustrated
in Fig. 1.

Fig. 1. Subject s draws a subset of T topics from K population-level topics. Indices of
the subject-level topics are stored in cs1, .., csT drawn from a categorical distribution.
At the subject level, indices of the supervoxels {zI

sn} and locations of minor alleles
{zG

s,m} are drawn from the subject-specific categorical distribution. Vector cs acts as a
map from subject-specific topics to the population-level topics (i.e., cs(z

G
sm) or cs(z

I
sn)).

Image and Genetic Data. We assume each subject in a study is character-
ized by an image and a genetic signature for the loci in the genome previously
implicated in the disease. Based on the analogy to the “bag-of-words” represen-
tation [14], we assume that an image domain is divided for each subject into
relatively homogeneous spatially contiguous regions (i.e., “supervoxels”). We let
Isn ∈ R

D denote the D-dimensional descriptor of supervoxel n in subject s
that summarizes the intensity and texture properties of the supervoxel. The
genetic data in our problem comes in a form of minor allele counts (0, 1 or 2)
for a set of L loci. Our representation for genetic data is inspired by the com-
monly used additive model in GWAS analysis [4]. In particular, we assume that
the risk of the disease increases monotonically by the minor allele count. We
let Gsm ∈ {1, · · · , L} denote minor allele m in genetic signature of subject s.
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For example, suppose L = 2, and subject s has one and two minor alleles in loca-
tions �1 and �2 respectively. This subject is represented by a list of 3 elements
Gs = {�1, �2, �2}.

Population Model. Our population model is based on the Hierarchical Dirich-
let Process (HDP) [17]. The model assumes a collection of K “topics” that are
shared across subjects in the population. We let pIk and pGk denote the dis-
tributions for the image and genetic signatures, respectively, associated with
topic k. Each pIk = N (μk, Σk) is a Gaussian distribution that generates super-
voxel descriptors Isn; it is parameterized by its mean vector μk ∈ R

D and covari-
ance matrix Σk ∈ R

D × R
D. Each pGk = Cat(βk) is a categorical distribution

that generates minor allele locations Gsm; it is parameterized by its weight vector
βk ∈ (0, 1)L.

When sampling a new subject s, at most T < K topics are drawn from
the population-wide pool to determine the image and genetic signature of this
subject. We let cst denote the population topic selected to serve as subject-
specific topic t (1 ≤ t ≤ T ) in subject s. We also use cs = [cs1, . . . , csT ] to
refer to the entire vector of topics selected for subject s. cs[t] = k indicates that
population-level topic k was selected to serve as subject-specific topic t. The
subject-specific topics inherit their signature distributions from the population
prototypes, but each subject is characterized by a different subset and propor-
tions of the population-level topics represented in the subject-specific data.

As T,K → ∞, this model converges to a non-parametric Hierarchical Dirich-
let Process (HDP) [17]. Rather than choose specific values for T and K, HDP
enables us to estimate them from the data. As part of this model, we employ the
“stick-breaking” construction [17] to parameterize the categorical distribution
for cst:

cst ∼ Cat-SB(v), (1)

where Cat-SB(v) is a categorical distribution whose weights are generated
through the stick-breaking process from the (potentially infinite) parameter vec-
tor v whose components are in the interval (0, 1). Formally, if we define a random
variable x ∼ Cat-SB(v), then

p(x) � vx

x−1∏
i=1

(1 − vi) for x = 1, . . . . (2)

This parameterization accepts infinite alphabets. The stick-breaking construc-
tion penalizes high number of topics hence encouraging parsimonious representa-
tion of data. A similar construction enables an automatic selection of the number
of topics at the population level and at the subject level. We employ a truncated
HDP variant that uses finite values for T and K [9]. In this setup, v ∈ (0, 1)K−1.
In contrast to finite (fixed) models, we set K to high enough value, and the
estimation procedure uses as many topics as needed but not necessarily all K
topics to explain the observations.

Subject-Specific Data. To generate an image descriptor for supervoxel n in
subject s, we sample random variable zIsn ∼ Cat-SB(πs) from a categorical
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distribution parameterized by the vector of stick-breaking proportions πs ∈
(0, 1)T−1. zIsn = t indicates that the subject-specific topic t generates image
descriptor Isn:

Isn|zIsn, cs ∼ N (
μcs[zI

sn]
, Σcs[zI

sn]

)
. (3)

Similarly, to generate minor allele location m in subject s, we sample random
variable zGsm ∼ Cat-SB(πs) and draw Gsm from the corresponding genetic sig-
nature of subject-specific topic zGsm:

Gsm|zGsm, cs ∼ Cat
(
βcs[zG

sm]

)
. (4)

Priors. Following the Bayesian approach, we define priors for the remaining
latent variables {vk, πst} and the parameters of the likelihood distributions
{μk, Σk, βk}. For the computational reasons, we choose the priors from the expo-
nential family. Specifically, we use the Beta distribution as the prior of the para-
meter vectors v and πs that determine the stick-breaking proportions at the
population-wide and subject-specific levels, respectively:

vk ∼ Beta(1, ω), k = 1, . . . , K − 1, (5)
πst ∼ Beta(1, α), t = 1, . . . , T − 1, (6)

where ω > 0 and α > 0 are the corresponding shape parameters of the Beta
distribution. For computational reasons, we also assume priors for image and
genetic signature parameters that are conjugate for the corresponding likelihood
distributions (3) and (4):

μk, Σk ∼ NIW(ηI) and βk ∼ Dir(ηG),

where NIW(η) is the Normal-Inverse-Wishart distribution with parameters η
and Dir(η) is the Dirichlet distributions with parameters η.

3 Inference

Given a study of S subjects with their respective image descriptors {Isn} and
genetic signatures {Gsm}, we seek posterior distributions of the model para-
meters. Since exact computation of the posterior quantities is computationally
intractable, we resort to an approximation. Due to the size of data and its dimen-
sionality, sampling is computationally impractical. We therefore derive a Vari-
ational Bayes (VB) approximation [9]. For notational convenience, we define
D = {Isn, Gsm}Ss=1 to be all image and genetic data, S = {zIsn, zGs,m, cs, πs}Ss=1

to be all subject-specific latent variables, and P = {μk, Σk, βk, vk}Kk=1 to be all
population-based latent variables. We omit fixed hyper-parameters to simplify
the notation. Variational Bayes inference selects an approximating distribution
q(S,P) for the true posterior distribution p(S,P|D) by minimizing the cost
functional

F (q) = Eq [ln p(D,S,P)] − Eq [ln q(S,P)] , (7)
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where Eq is the expectation with respect to the probability measure q and Eq. (7)
can be thought of as the KL divergence between the approximating distribution
and the true posterior distribution. Additional details and the update rules of
the iterative inference algorithm can be found in the Appendix.

We use the parameters of the approximating distribution q(S,P) to con-
struct estimates of the relevant model parameters. Specifically, we seek the esti-
mates (μ̂k, Σ̂k) of the image descriptors and the estimates β̂k of the associated
genetic signatures for each population-level topic k. Moreover, for each subject s
we estimate a distribution over the population topics for each supervoxel to
visualize the spatial distributions of disease subtypes for clinical assessment.

4 Experiments

In this section, we demonstrate and evaluate the algorithm on simulated and real
data. We use simulated data to study the advantages offered by the hierarchical
model and investigate the effects of the side information (genetic data in our
case) on the accuracy of recovering the latent topics. We also investigate the
behavior of the model with respect to the hyper-parameters. We illustrate the
method on a subset of a large-scale study of lung based on CT images of COPD
patients. In this experiment, we characterize co-occurring image and genetic
patterns in the data.

4.1 Simulation

To evaluate the performance of the method, we sampled the data from the
proposed hierarchical model. In particular, we generated image and genetic sig-
natures for S = 100 subjects from 20 population-level topics while limiting
the number of subject-specific topics to 5. We used Beta(1, 8) and Beta(1, 1)
for population-level and subject-specific stick-breaking proportions that govern
the relative frequencies of the topics. Such choice generates higher variability
of weights at the population level than those at the subject level. We drew the
image signature parameters for population topics from a 2-dimensional NIW
distribution with a zero mean vector, identity covariance matrix, and the shape
and scale parameters set to 5 and 0.5. The subject-specific image signatures
(N = 75 for all s) are drawn from Gaussian distributions whose parameters
are determined by the corresponding image parameters of the population topic.
The weights of the genetic signatures for each population-level topic are drawn
from a Dirichlet distribution with all parameters set to one. The subject-specific
genetic signatures (M = 65 for all s) are drawn from a categorical distributions
determined by the weights of the corresponding genetic signature of the topic
model.

Hyper-parameters ω and α control the model size, i.e., the number of top-
ics at the population level and the subject level respectively. Of the two, the
population-level parameter ω has a stronger influence on how well the model
explains subject-specific data. We sweep a range (0.5, 5.0) for both parameters.
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Fig. 2. Simulated data results. Left: variational lower bound F (q∗) for different val-
ues of (α, ω). Middle: the number of topics discovered by the model as a function of
ω averaged over α. Right: normalized mutual information between the true and the
discovered topics for our method and for k-means clustering (K-M) applied to pooled
data. The number of discovered topics is reported in brackets under the corresponding
value of ω (w gene, w/o gene). Two variants of our method are denoted by THDP.

Figure 2(Left) reports the value of the lower bound F (q∗) for each pair of the
parameter settings which we use for model selection. We observe that the algo-
rithm’s performance depends smoothly on the parameter values. In subsequent
experiments, we set α to the optimal values based on F (q∗) and study the behav-
ior of the model for a range of values of ω. Figure 2(Middle) reports the number
of population topics estimated by the model as a function of ω. Not surprisingly,
the model size grows with ω, but is quite stable for a wide range of values of ω.

To evaluate the effects of the hierarchical model and of joint modeling of
image and genetic information, we compare our approach (with and without
genetic data) to a k-means algorithm applied to the pooled data from all sub-
jects. We apply the baseline k-means clustering to image data only, and also to
the data set of image signatures of all supervoxels concatenated with the entire
genetic signature of the same subject. Figure 2(Right) compares our method with
the two k-means variants using a standard measure of normalized mutual infor-
mation (v-measure) [12] between the true and discovered topics. The measure
varies between 0 and 1; 1 corresponds to the perfect match. While adding genetic
information to image features boosts the performance of our method and cluster-
ing on pooled data, our hierarchical model outperforms both baseline methods
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Fig. 3. Example simulated image data using 2D features. (a) Features from all subjects
pooled into one set. Colors correspond to true topics, unavailable to the algorithm. (b)
Image features for a single subject in a set. (c) Topics recovered by our algorithm (with
genetic data) for the same subject based on the whole data set. (d) Topics recovered
by k-means clustering applied to the pooled data in (a) (Colour figure online).
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substantially for a wide range of values of ω. The difference between two vari-
ants of our method illustrates the value of the side information to improve the
performance. Figure 3 illustrates this point on an example from our simulations
for one setting of the parameters.

4.2 COPD Study

We apply the method to CT images of lung in 2399 subjects from a the
COPDGene study [11]. After automatic segmentation of the lung, we employ
a modified version of super-voxelization method [1] to subdivide the lungs into
coherent, spatially contiguous regions. From each supervoxel, we extract local
histogram of the intensity (CT number) as a local descriptor. We choose to work
with this particular descriptor because it has been shown to be highly informa-
tive for emphysema sub-typing [5]. Furthermore, working with such a straight-
forward image descriptor removes the confounding parameters introduced by
more complex image descriptors and helps us to quantify the contribution of the
model. For each supervoxel, we use PCA to map the local intensity histogram
to a 30-dimensional vector, i.e., Isn ∈ R

30. The 30 principal components explain
more than 99 % of variance in the entire data. Moreover, we complied a list of
SNPs previously identified in genome-wide association studies for COPD or lung
function measurements that define COPD (FEV1 and FEV1/FVC) [7]. Based
on our experience with the simulated data and the expected number of disease
subtypes, we set K = 30 and T = 10. Furthermore, we set α = 1, ω = 5 and set
uninformative priors for the image and genetic signature parameters.

The method summarizes the population into 23 population-level topics. The
number of topics per patient varies from one to four. Figure 4 visualizes the top
four topics where each topic is an intensity distribution. The tables on the right
are the top six minor alleles in the genetic signature of each topic. We observe
that the genetic signatures (relative weights or rankings) vary across topics, sug-
gesting variable genetic patterns that give rise to different image properties. To
visualize the spatial distribution of the topics, we computed the membership

SNP Chr β̂k
rs2865531 16 0.054
rs45505795 14 0.049
rs11134779 5 0.048
rs2798641 6 0.048
rs11654749 17 0.047
rs993925 1 0.045

SNP Chr β̂k
rs2865531 16 0.059
rs11134779 5 0.058
rs12477314 2 0.050
rs11654749 17 0.048
rs993925 1 0.048
rs45505795 14 0.044

SNP Chr β̂k
rs993925 1 0.055
rs2865531 16 0.052
rs11172113 12 0.052
rs2798641 6 0.048
rs7594321 2 0.046
rs45505795 14 0.046

SNP Chr β̂k
rs2865531 16 0.053
rs993925 1 0.052
rs11134779 5 0.052
rs45505795 14 0.048
rs2798641 6 0.047
rs7594321 2 0.046

Fig. 4. Four first topics, ranked according to their proportions. Each histogram density
is one topic. The values inside of the brackets are the overall proportion computed from
the posterior. The tables on the right report the top six SNPs for each topic with their
estimated relative weights. We observe that the genetic signatures vary across topics.
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value of the supervoxel in the population-level topics (i.e.,
∑

t φI
sn(t)ξst), which

yields one image per topic for each subject. Then, we warped the resulting prob-
ability maps to a common coordinate frame (i.e., lung atlas). Figure 5 demon-
strates average distributions of the three topics that tend to localize around the
boundary of the lung.

Fig. 5. Spatial average distribution of three topics. The color indicates the posterior
probability. The higher the intensity of the color, the higher the probability (Colour
figure online).

5 Conclusions

We proposed and demonstrated a generative model based on the truncated Hier-
archical Dirichlet Process to identify common image and genetic patterns in a
population. The underlying assumption of our model is that every subject is a
superposition of few topics. Our main contribution is to model side information-
in this case, genetic variants - jointly with imaging data. We demonstrated the
method on synthesized data and reported preliminary results for the COPD
study (Fig. 5).

Once population-wide template of image and genetic variability has been
constructed, it enables us to answer many interesting questions about the het-
erogeneity of the disease in the population and in individual subjects. In par-
ticular, investigating the variability of topic representation in different subjects
and using subject-specific topic proportions promise to provide a handle on how
the disease varies in a population and suggest numerous interesting directions
for future work.
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Appendix: Variational Bayes Inference Procedure

Combining all components of the model defined in Sect. 2, we construct the joint
distribution of all variables in the model (Fig. 6):

p(D,S,P) =
K∏

k=1

p(μk, Σk; ηI) p(βk; ηG) p(vk;ω)

︸ ︷︷ ︸
population-level topics

×

S∏
s=1

T∏
t=1

p(cst|vk)p(πst;α)︸ ︷︷ ︸
topics for subject s

N∏
n=1

p(zIsn|πst)︸ ︷︷ ︸
image topic

p(Isn|zIsn, cst, {μk, Σk})︸ ︷︷ ︸
image likelihood

M∏
m=1

p(zGsm|πst)︸ ︷︷ ︸
genetic topic

p(Gsm|zGsm, cst, βk)︸ ︷︷ ︸
genetic likelihood

,

where N and M are the number of supervoxels and minor alleles, respectively,
identified for subject s.

Fig. 6. Left: Graphical model that represents the joint distribution. The open gray and
white circles correspond to the observed and the latent random variables, respectively.
The full circles represent fixed hyper-parameters. Superscript I and G denote image
and genetic parts of the model respectively. Right: Update rules for the variational
parameters.
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We choose a factorization for the distribution q that captures most model
assumptions and yet is computationally tractable:

q(S,P) =
K∏

k=1

NIW(μk, Σk; η̃I
k)Dir(βk; η̃G

k ) Beta(vk; ω̃k)

︸ ︷︷ ︸
population-level topics

×

S∏
s=1

T∏
t=1

Cat(cst; ξst) Beta(πst; α̃st)︸ ︷︷ ︸
topics for subject s

N∏
n=1

Cat(zIsn;φI
sn)︸ ︷︷ ︸

image topic

M∏
m=1

Cat(zGsm;φG
sm)︸ ︷︷ ︸

genetic topic

,

where we choose an appropriate approximating distribution for each latent
variable and use ˜ to denote parameters of the approximating distribu-
tions. The optimization is defined in the space of the variational parameters{
η̃I , η̃G, ω̃, ξ, α̃, φI , φG

}
. We omit the derivation of the updates due to space

constraints; Algorithm 1 provides pseudocode for the resulting updates. We run
the algorithm five times starting from different random initializations and report
the result with the highest lower bound F (q) .

Once the algorithm converges, we estimate the population-level quantities of
interest as means of the corresponding approximating distributions:

μ̂k = E [μk|D] ≈ Eq

[
μk; η̃I

k

]
, Σ̂k = E [Σk|D] ≈ Eq

[
ΣI

k ; η̃I
k

]
,

β̂k = E [βk|D] ≈ Eq

[
βG
k ; η̃G

k

]
.

Each expectation above can be easily evaluated from the parameters of the cor-
responding distribution. In addition, we construct spatial maps that display the
posterior probability of each population topic for each supervoxel in a particular
subject s to visually evaluate the disease structure in that subject.
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