11 research outputs found

    Investigating the Efficiency of Phosphate Removal from Wastewater from Sugar Cultivation Industry Using Baffled Subsurface-Flow Constructed Wetland

    Get PDF
    Phosphorus is recognized as a nutrient in aquatic environments, but increasing its concentration in water resources causes the occurrence of eutrophication in water and, as a result, causes the death of aquatic organisms. Therefore, removal of phosphate from water is very important. In this research, in order to remove phosphate from water resources, the baffled subsurface-flow constructed wetland was used. In order to increase the efficiency of the wetland system, experiments were designed in 3 different phases. In the first phase, in the form of batch experiments, the composite performance of cheap materials such as zeolite, bentonite and pumice aggregates (The stabilization of nanoparticles of zeolite\bentonite on the surface of Pumice aggregates) to absorb phosphate and select the preferred candidate for placement in the wetland was investigated. In the second phase, in the form of pot experimentation, the performance of native plants of khuzestan province such as salicornia, Typha, and Juncus, In order to uptake phosphate and select the best candidate for cultivation in the bed of the wetland was investigated. Finally, in the third phase, with the placement of the selected bedding and plant (selected from previous experiments) in the wetland system, experiments were carried out to study the effect of parameters such as the percentage of optimum mix of Selected bed with gravel, hydraulic residence time and temperature changes on the phosphate removal efficiency. The results showed that among absorbent materials and candidate plants for placement and cultivation in the wetland, the maximum capacity to absorb and accumulate phosphate by Pumice aggregate coated by zeolite nanoparticles (1.08 mg/g) and salicornia (9.68 mg/g of plant dry weight) was observed. In this experiment, The use of a combination of 10% of the selected bed with 90% of the gravel was obtained as the best and most economical option for removal of phosphate. Also, the efficiency of removal of phosphate in the 1-day hydraulic residence time was achieved at the highest intensity (99.60%) and was selected as the optimum time to remove phosphate. Finally, the results of the effect of temperature changes on the efficiency of the wetland system showed that the removal efficiency from March 2018 (20 °C) to July 2018 (40 °C) increased to about 1 percent, which indicates the effect of temperature changes on the performance of the wetland system. According to the results, in the case of adequate land availability, the use of subsurface-flow constructed wetland systems to wastewater treatment of agricultural and industrial units is very convenient and cost-effective

    Desalination Using the Condensation Irrigation System, A Case Study of the Research Farm of Shahid Chamran University of Ahvaz

    No full text
    Condensation Irrigation (CI) is a combination of simultaneous desalination and irrigation/drinking water production. As saline water evaporates in a solar distiller and the hot and humid air is transferred into an underground pipeline, fresh water will condense on the inner pipe surface due to cooling of air by the ground. The water thus condensed infiltrates into the soil through pores in the perforated drainage pipes laid in the ground to transfer the humidified air. In this study, the CI system was developed using common buried pipes to determine the amount of water produced. In this setup, condensed water is collected at the end of the pipe to be used for drinking. Observations and calculations indicated a mean water production capacity of 4 liters every 8 hours along a pipe 25m long. Less water was produced on the first day because some of the water was lost to the wetting of the internal pipe walls. Finally, examination of temperature effects revealed that water production along the pipe reduces as we move farther away from the inlet part of the pipe

    Crop response and water productivity of sunflower (Helianthus annuus L.) drip-irrigated with magnetically treated and non-magnetically treated water with variable salinity

    No full text
    To compare the effect of magnetic drip irrigation and conventional irrigation with different salinity levels on water productivity and yield of sunflower (Helianthus annuus L.), a factorial experiment was conducted using a completely randomized design with 6 treatments and 3 replicates at the Research Station of the Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran. The experiment was executed over the crop year 2018–19. The treatment variables consisted of 2 types of water (magnetically treated and non-magnetically treated) and 3 salinity levels (Karun River water (S1), 4 dS/m (S2), and 6 dS/m (S3)). The use of magnetically treated irrigation water increased the biomass water use efficiency, and the weight of 100 seeds by 13.9%, and 5.48%, respectively. With the conventional irrigation method, increased salinity reduced the seed yield. The highest seed yield and irrigation water productivity were observed at 4 459 kg/ha and 0.73 kg/m3 for grain yield at a water salinity level of S1 (the control treatment). The application of water with salinity of 4 dS/m and 6 dS/m (S2 and S3) caused a reduction in seed yield by 9.3 and 21.8%, respectively, in comparison to that of the control treatment. Moreover, irrigation water productivity for the biomass yield decreased by 14.57 and 29.23%, respectively. Based on the results of this study, the use of magnetically treated water can reduce the effects of salinity stress under conditions of salt stress. Therefore, magnetically treated water can increase the yield and productivity of irrigation water

    Condensation Irrigation Field Test : Measurements of Soil Moisture

    No full text
    Due to the growing population and scarcity of fresh water it is increasingly important to produce potable water by desalination of saline water. However, desalination requires energy and in a sustainable world it has to be based on renewable energy. Condensation irrigation (CI) is a method that combines desalination and irrigation. In such systems solar energy could be used to provide needed energy. By letting air flow over the water surface in a solar still with saline or polluted water, the air is humidified. The vapor-saturated airflow is then lead into buried pipes, where the air gradually cools and the water precipitates along the pipe surface. In current field study perforated PVC pipes were used i.e. the condensed water left the pipe through its walls and irrigated the surrounding soil. In PVC pipes without perforations the produced water was collected at the pipe outlet. A fan was used to force the air through the 25 m pipes of the CI system. The resulting amount of produced water per 8 hours for drinking water and irrigation was 4.0 and 6.0 l, respectively.Upprättat; 2016; 20160401 (bon)</p

    Investigation of surface, sprinkler and drip irrigation methods based on the parametric evaluation approach in Jaizan Plain

    Get PDF
    The main objective of this research is to compare different irrigation methods based upon a parametric evaluation system in an area of 15,000 ha in the Jaizan Plain, Iran. Once the soil properties were analyzed and evaluated, suitability maps were generated for surface, sprinkler and drip irrigation methods using Geographic Information System (GIS). The obtained results showed that for 5275 ha (35.17%) of the study area surface irrigation method was highly recommended; whereas for 7500 ha (50%) of the study area a sprinkler irrigation method would provide to be extremely efficient and suitable; moreover, it was found that 7325 ha (48.83%) of the study area was highly suitable for drip irrigation methods. The results demonstrated that by applying sprinkler irrigation instead of surface and drip irrigation methods, the arability of 13875 ha (92.5%) in the Jaizan Plain will improve. The comparison of the different types of irrigation techniques revealed that the sprinkler and drip irrigations methods were more effective and efficient than the surface irrigation methods for improving land productivity. It is of note however that the main limiting factor in using surface irrigation methods in this area was drainage and the main limiting factor in using sprinkler irrigation methods in this area were gravel soil texture, drainage and calcium carbonate and the main limiting factors in using drip irrigation methods were the drainage and calcium carbonate

    Field solution to produce irrigation-drinking water by condensation irrigation system from seawater

    No full text
    Condensation irrigation (CI) combines desalination with subsurface irrigation. Here, solar stills are used to heat and humidity air, which is condensed in underground drainage pipes to irrigate the soil, directly in the root zone. This article describes and evaluates a CI field test at Shahid Chamran University of Ahvaz in Iran. The objective was to gain a deeper understanding of the CI system in the production of drinking and irrigation water and to do a detailed assessment of heat and moisture transfer in the soil. Perforated and unperforated PVC pipes were used in two separate experiments while airflow properties, soil temperature and humidity, and ambient air temperature were monitored. The system produced 6 kg of irrigation water during eight hours, in the 25 m long pipe. When using an unperforated pipe, 4 kg of freshwater was collected at the pipe ending after eight hours of operation. The preliminary economic analysis of irrigation system indicates a payback time of less than 6 years.Validerad;2022;Nivå 2;2022-06-07 (sofila)</p

    Nitrate Removal from Contaminated Waters by Using Anion Exchanger Phragmites Australis Nanoparticles

    No full text
    The efficiency of modified Phragmites australis nanoparticles for nitrate removal from aqueous solution in batch and continuous conditions was studied. The effect of different operating conditions such as pH, the amount of adsorbent, and initial nitrate concentration were surveyed. Our results showed that, pH 6 could provide better condition for nitrate removal. The increase in the nitrate concentration from 5 to 120mg L-1 reduced the efficiency from 90% to 67%. Kinetics and isotherm data revealed that the nitrate adsorption successfully can be described by pseudo-second order kinetic model (R2 =1) and Longmuir isotherm (R2 =0.99), respectively. At the continuous-flow mode, column were operated at 0.98 L hr-1 and 2.27 L hr-1 with initial nitrate concentration of 15, 50 and 120 mg L-1. At the above mentioned conditions, the adsorption capacities were 13.4, 28.5 and 36.5 mg g -1 at 0.98 L hr-1 and 25.2, 60.9 and 74.3 mg g-1 at 2.27 L hr-1,  respectively
    corecore