25 research outputs found

    Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine

    Get PDF
    With the huge negative impact of neurological disorders on patient’s life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson’s disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future

    CADASIL in Arabs: clinical and genetic findings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is increasingly recognized as an inherited arterial disease leading to a step-wise decline and eventually to dementia. CADASIL is caused by mutations in <it>NOTCH3 </it>epidermal growth factor-like repeat that maps to chromosome 19. CADASIL cases have been identified in most countries of Western and Central Europe, the Americas, Japan, Australia, the Caribbean, South America, Tanzania, Turkey, South Africa and Southeast Asia, but not in Arabs.</p> <p>Methods</p> <p>We studied three families from Saudi Arabia (Family A), Kuwait (Family B) and Yemen (Family C) with 19 individuals affected by CADASIL.</p> <p>Results</p> <p>The mean age of onset was 31 ± 6 and the clinical presentation included stroke in 68%, subcortical dementia in 17% and asymptomatic leukoariosis detected by MRI in 15%. Migraine and depression were frequently associated, 38% and 68% respectively. The mean age of death was 56 ± 11. All <it>NOTCH3 </it>exons were screened for mutations, which revealed the presence of previously reported mutations c.406C>T (p.Arg110>Cys) in two families (family A&B) and c.475C>T (p.Arg133>Cys) mutation in family C.</p> <p>Conclusion</p> <p>CADASIL occurs in Arabs, with clinical phenotype and genotype similar to that in other ethnic groups.</p

    Clinical and Molecular Characterization of Ataxia with Oculomotor Apraxia Patients In Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal recessive ataxias represent a group of clinically overlapping disorders. These include ataxia with oculomotor apraxia type1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2) and ataxia-telangiectasia-like disease (ATLD). Patients are mainly characterized by cerebellar ataxia and oculomotor apraxia. Although these forms are not quite distinctive phenotypically, different genes have been linked to these disorders. Mutations in the <it>APTX </it>gene were reported in AOA1 patients, mutations in <it>SETX </it>gene were reported in patients with AOA2 and mutations in <it>MRE11 </it>were identified in ATLD patients. In the present study we describe in detail the clinical features and results of genetic analysis of 9 patients from 4 Saudi families with ataxia and oculomotor apraxia.</p> <p>Methods</p> <p>This study was conducted in the period between 2005-2010 to clinically and molecularly characterize patients with AOA phenotype. Comprehensive sequencing of all coding exons of previously reported genes related to this disorder (<it>APTX</it>, <it>SETX </it>and <it>MRE11</it>).</p> <p>Results</p> <p>A novel nonsense truncating mutation c.6859 C > T, R2287X in <it>SETX </it>gene was identified in patients from one family with AOA2. The previously reported missense mutation W210C in <it>MRE11 </it>gene was identified in two families with autosomal recessive ataxia and oculomotor apraxia.</p> <p>Conclusion</p> <p>Mutations in <it>APTX </it>, <it>SETX </it>and <it>MRE11 </it>are common in patients with autosomal recessive ataxia and oculomotor apraxia. The results of the comprehensive screening of these genes in 4 Saudi families identified mutations in <it>SETX </it>and <it>MRE11 </it>genes but failed to identify mutations in <it>APTX </it>gene.</p

    International consensus project: Neuro-behcet disease

    No full text
    İstanbul Bilim Üniversitesi, Tıp Fakültesi.Aim: Behçet's disease (BD) is a multisystem disease and neurological complications of Behçet's disease [neuro-Behçet's disease (NBD)] are amongst the life threatening and disabling manifestations. Evidence based is limited and there are no guidelines on the diagnostic and therapeutic aspects of NBD. We set out to develop clinical recommendations on the key issues in the diagnosis and management of NBD to assist clinicians involved in care of such patients

    Skin biopsy in Lafora disease - Genotype-phenotype correlations and diagnostic pitfalls

    No full text
    Lafora disease is characterized by pathognomonic inclusions, Lafora bodies (LB), in neurons and other cell types. In skin, LB have been reported in either eccrine sweat glands or in apocrine sweat glands. The disease is caused by mutations in either the EPM2A gene or in a second yet-unknown gene. Here the authors determine whether a genotype phenotype correlation exists between the genetic form of the disease and the skin cell type affected by LB formation. Also is described an important source of false positivity in the use of axillary biopsies for disease diagnosis.Hosp Sick Children, Dept Pediat, Div Neurol, Toronto, ON M5G 1X8, CanadaHosp Sick Children, Dept Genet, Div Neurol, Toronto, ON M5G 1X8, CanadaHosp Sick Children, Dept Pathol, Toronto, ON M5G 1X8, CanadaHosp Sick Children, Res Inst, Program Genet & Genom Biol, Toronto, ON M5G 1X8, CanadaUniv Toronto, Dept Mol & Med Genet, Toronto, ON M5G 1X8, CanadaUniv Fed Parana, Hosp Clin, Neurol Serv, Div Behav Neurol,Movement Disorder Unit, Curitiba, Parana, BrazilUniv Fed Sao Paulo, Dept Neurol & Neurosurg, Div Behav Neurol, Escola Paulista Med, Curitiba, Parana, BrazilKing Faisal Specialist Hosp & Res Ctr, Dept Neurosci, Riyadh 11211, Saudi ArabiaUniv Fed Sao Paulo, Dept Neurol & Neurosurg, Div Behav Neurol, Escola Paulista Med, Curitiba, Parana, BrazilWeb of Scienc

    Exome Sequencing: Mutilating Sensory Neuropathy with Spastic Paraplegia due to a Mutation in FAM134B Gene

    No full text
    Hereditary sensory and autonomic neuropathies (HSANs) are a clinically and genetically heterogeneous group of disorders involving various sensory and autonomic dysfunctions. The most common symptoms of HSANs include loss of sensations of pain and temperature that frequently lead to chronic ulcerations in the feet and hands of the patient. In this case study, we present the clinical features and genetic characteristics of two affected individuals from two unrelated Saudi families presenting mutilating sensory loss and spastic paraplegia. We employed homozygosity mapping and exome sequencing which is an efficient strategy to characterize the recessive genes, thus obtaining a rapid molecular diagnosis for genetically heterogeneous disorders like HSAN. Subsequently, a nonsense mutation (c.926 C>G; p.S309⁎) in FAM134B was identified. In addition, we confirmed that the mutant FAM134B transcripts were reduced in these patients presumably disrupting the receptors of the degradative endoplasmic reticulum pathways that facilitate the autophagy processes

    Identification of a novel genetic locus underlying tremor and dystonia

    No full text
    Abstract Background Five affected individuals with syndromic tremulous dystonia, spasticity, and white matter disease from a consanguineous extended family covering a period of over 24 years are presented. A positional cloning approach utilizing genome-wide linkage, homozygozity mapping and whole exome sequencing was used for genetic characterization. The impact of a calmodulin-binding transcription activator 2, (CAMTA2) isoform 2, hypomorphic mutation on mRNA and protein abundance was studied using fluorescent reporter expression cassettes. Human brain sub-region cDNA libraries were used to study the expression pattern of CAMTA2 transcript variants. Results Linkage analysis and homozygozity mapping localized the disease allele to a 2.1 Mb interval on chromosome 17 with a LOD score of 4.58. Whole exome sequencing identified a G>A change in the transcript variant 2 5′UTR of CAMTA2 that was only 6 bases upstream of the translation start site (c.-6G > A) (NM_001171166.1) and segregated with disease in an autosomal recessive manner. Transfection of wild type and mutant 5′UTR-linked fluorescent reporters showed no impact upon mRNA levels but a significant reduction in the protein fluorescent activity implying translation inhibition. Conclusions Mutation of CAMTA2 resulting in post-transcriptional inhibition of its own gene activity likely underlies a novel syndromic tremulous dystonia

    Cladribine Tablets and Relapsing–Remitting Multiple Sclerosis: A Pragmatic, Narrative Review of What Physicians Need to Know

    No full text
    Abstract Immune reconstitution therapy (IRT) is an emerging management concept for multiple sclerosis, whereby a short course of treatment provides long-lasting suppression of disease activity. “Cladribine tablets 10 mg” refers to a total cumulative dose of cladribine given over 2 years (henceforth referred to as cladribine tablets 3.5 mg/kg); it is a relatively new treatment option that is hypothesised to act as an IRT acting preferentially on the adaptive immune system. A randomised, 2-year, placebo-controlled trial (CLARITY) showed that treatment with cladribine tablets reduced indices of disease activity (relapses, lesions on magnetic resonance images, disability progression) and that this effect outlasted the pharmacologic effect of the treatment on the immune system (mainly a reduction in circulating B and T cells, with little effect on components of the innate immune system such as monocytes). CLARITY Extension, a 2-year extension to this trial, demonstrated durable efficacy, also in patients who received the standard 2-year course of cladribine tablets 3.5 mg/kg and were re-randomised to placebo for a further 2 years. Relative risk reductions for relapse rate with cladribine tablets 3.5 mg/kg were similar for patients with or without prior high disease activity. Reductions in disability progression with cladribine tablets 3.5 mg/kg were higher in patients with prior high relapse rates with or without prior treatment non-response. In this review, we describe the therapeutic profile of cladribine tablets 3.5 mg/kg and provide practical information on initiating this treatment option in the most appropriate patients
    corecore