2 research outputs found

    Performance Enhancement of Chaotic Error Correction Coding Using Consecutive Sequences, Journal of Telecommunications and Information Technology, 2023, nr 2

    Get PDF
    The use of chaotic dynamics for error correction is the subject of extensive research, as the approach allows to avoid the use of redundant data. This work proposes a new technique for non-coherent chaos communications for modifying error-correction depending on chaotic dynamics. In the proposed system, there are two consecutive sequences created from a comparable chaotic map, with the second series being created as the latest value of the initial one. Generation of a sequential chaotic sequence with a comparable chaotic dynamic delivers additional information to the receiver, allowing it to appropriately recover information and, hence, facilitate the receiver’s bit-error performance. For error correction and for detecting the symbol that is transmitted, a suboptimal technique based on the nearest distance between chaotic map trajectories over the n-dimensional sequence received is utilized. Simulation results show that the proposed error correction approach improves Eb/N0 as the dimension of the trajectory map increases, indicating that the method improves overall error correction performance. With the dimension of 4, a gain of 0.8 dB in Eb/N0 is achieved compared with an approach without any error-correcting schemes, at the bit-error probability of 10−3

    Performance Enhancement of Chaotic Error Correction Coding Using Consecutive Sequences

    No full text
    The use of chaotic dynamics for error correction is the subject of extensive research, as the approach allows to avoid the use of redundant data. This work proposes a new technique for non-coherent chaos communications for modifying error-correction depending on chaotic dynamics. In the proposed system, there are two consecutive sequences created from a comparable chaotic map, with the second series being created as the latest value of the initial one. Generation of a sequential chaotic sequence with a comparable chaotic dynamic delivers additional information to the receiver, allowing it to appropriately recover information and, hence, facilitate the receiver’s bit-error performance. For error correction and for detecting the symbol that is transmitted, a suboptimal technique based on the nearest distance between chaotic map trajectories over the n-dimensional sequence received is utilized. Simulation results show that the proposed error correction approach improves Eb/N0 as the dimension of the trajectory map increases, indicating that the method improves overall error correction performance. With the dimension of 4, a gain of 0.8 dB in Eb/N0 is achieved compared with an approach without any error-correcting schemes, at the bit-error probability of 10−3
    corecore