2 research outputs found

    Characterizing the Qatar advanced-phase SARS-CoV-2 epidemic.

    Get PDF
    The overarching objective of this study was to provide the descriptive epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Qatar by addressing specific research questions through a series of national epidemiologic studies. Sources of data were the centralized and standardized national databases for SARS-CoV-2 infection. By July 10, 2020, 397,577 individuals had been tested for SARS-CoV-2 using polymerase-chain-reaction (PCR), of whom 110,986 were positive, a positivity cumulative rate of 27.9% (95% CI 27.8-28.1%). As of July 5, case severity rate, based on World Health Organization (WHO) severity classification, was 3.4% and case fatality rate was 1.4 per 1,000 persons. Age was by far the strongest predictor of severe, critical, or fatal infection. PCR positivity of nasopharyngeal/oropharyngeal swabs in a national community survey (May 6-7) including 1,307 participants was 14.9% (95% CI 11.5-19.0%); 58.5% of those testing positive were asymptomatic. Across 448 ad-hoc testing campaigns in workplaces and residential areas including 26,715 individuals, pooled mean PCR positivity was 15.6% (95% CI 13.7-17.7%). SARS-CoV-2 antibody prevalence was 24.0% (95% CI 23.3-24.6%) in 32,970 residual clinical blood specimens. Antibody prevalence was only 47.3% (95% CI 46.2-48.5%) in those who had at least one PCR positive result, but 91.3% (95% CI 89.5-92.9%) among those who were PCR positive > 3 weeks before serology testing. Qatar has experienced a large SARS-CoV-2 epidemic that is rapidly declining, apparently due to growing immunity levels in the population

    Reporting of RT-PCR cycle threshold (Ct) values during the first wave of COVID-19 in Qatar improved result interpretation in clinical and public health settings

    No full text
    Introduction. The cycle threshold (Ct) value in real-time PCR (RT-PCR) is where a target-specific amplification signal becomes detectable and can infer viral load, risk of transmission and recovery. Use of Ct values in routine practice is uncommon. Gap Statement. There is a lack of routine use of Ct values when reporting RT-PCR results in routine practice. Aim. To automatically insert Ct values and interpretive comments when reporting SARS-CoV-2 RT-PCR to improve patient management. Methodology. Routine Ct values across three different RT-PCR platforms were reviewed for concordance at presentation and clearance in patients with COVID-19. An indicative threshold (IT) linked to viral clearance kinetics was defined at Ct30 to categorize Ct values as low and high, reflecting high and low viral loads respectively. Results. The different gene targets of each platform showed high correlation and kappa score agreement (PCt30 as reactive; interpretive comments were added to all reports. The new reporting algorithm impacted on: physician interpretation of SARS-CoV-2 results; patient management and transfer; staff surveillance; length of stay in quarantine; and redefinition of patient recovery. Conclusion. Incorporation of Ct values into routine practice is possible across different RT-PCR platforms and adds useful information for patient management. The use of an IT with interpretive comments improves clinical interpretation and could be a model for reporting other respiratory infections. Withholding Ct values wastes useful clinical data and should be reviewed by the profession, accreditation bodies and regulators
    corecore