2 research outputs found

    Two interacting atoms in a cavity: exact solutions, entanglement and decoherence

    Full text link
    We address the problem of two interacting atoms of different species inside a cavity and find the explicit solutions of the corresponding eigenvalues and eigenfunctions using a new invariant. This model encompasses various commonly used models. By way of example we obtain closed expressions for concurrence and purity as a function of time for the case where the cavity is prepared in a number state. We discuss the behaviour of these quantities and and their relative behaviour in the concurrence-purity plane.Comment: 10 pages, 3 figure

    Playing relativistic billiards beyond graphene

    Get PDF
    The possibility of using hexagonal structures in general and graphene in particular to emulate the Dirac equation is the basis of our considerations. We show that Dirac oscillators with or without restmass can be emulated by distorting a tight binding model on a hexagonal structure. In a quest to make a toy model for such relativistic equations we first show that a hexagonal lattice of attractive potential wells would be a good candidate. First we consider the corresponding one-dimensional model giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the deformations needed in the two-dimensional case. Finally we discuss, how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and describe an appropriate experimental setup.Comment: 23 pages, 8 figures. Submitted to NJ
    corecore