1,337 research outputs found
Robust Temporal Logic Model Predictive Control
Control synthesis from temporal logic specifications has gained popularity in
recent years. In this paper, we use a model predictive approach to control
discrete time linear systems with additive bounded disturbances subject to
constraints given as formulas of signal temporal logic (STL). We introduce a
(conservative) computationally efficient framework to synthesize control
strategies based on mixed integer programs. The designed controllers satisfy
the temporal logic requirements, are robust to all possible realizations of the
disturbances, and optimal with respect to a cost function. In case the temporal
logic constraint is infeasible, the controller satisfies a relaxed, minimally
violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd
Annual Allerton Conference on Communication, Control and Computing,
Urbana-Champaign, IL (2015
Distributed Robust Set-Invariance for Interconnected Linear Systems
We introduce a class of distributed control policies for networks of
discrete-time linear systems with polytopic additive disturbances. The
objective is to restrict the network-level state and controls to user-specified
polyhedral sets for all times. This problem arises in many safety-critical
applications. We consider two problems. First, given a communication graph
characterizing the structure of the information flow in the network, we find
the optimal distributed control policy by solving a single linear program.
Second, we find the sparsest communication graph required for the existence of
a distributed invariance-inducing control policy. Illustrative examples,
including one on platooning, are presented.Comment: 8 Pages. Submitted to American Control Conference (ACC), 201
Formal Synthesis of Control Strategies for Positive Monotone Systems
We design controllers from formal specifications for positive discrete-time
monotone systems that are subject to bounded disturbances. Such systems are
widely used to model the dynamics of transportation and biological networks.
The specifications are described using signal temporal logic (STL), which can
express a broad range of temporal properties. We formulate the problem as a
mixed-integer linear program (MILP) and show that under the assumptions made in
this paper, which are not restrictive for traffic applications, the existence
of open-loop control policies is sufficient and almost necessary to ensure the
satisfaction of STL formulas. We establish a relation between satisfaction of
STL formulas in infinite time and set-invariance theories and provide an
efficient method to compute robust control invariant sets in high dimensions.
We also develop a robust model predictive framework to plan controls optimally
while ensuring the satisfaction of the specification. Illustrative examples and
a traffic management case study are included.Comment: To appear in IEEE Transactions on Automatic Control (TAC) (2018), 16
pages, double colum
Robotic swarm control from spatio-temporal specifications
In this paper, we study the problem of controlling a two-dimensional robotic swarm with the purpose of achieving high level and complex spatio-temporal patterns. We use a rich spatio-temporal logic that is capable of describing a wide range of time varying and complex spatial configurations, and develop a method to encode such formal specifications as a set of mixed integer linear constraints, which are incorporated into a mixed integer linear programming problem. We plan trajectories for each individual robot such that the whole swarm satisfies the spatio-temporal requirements, while optimizing total robot movement and/or a metric that shows how strongly the swarm trajectory resembles given spatio-temporal behaviors. An illustrative case study is included.This work was partially supported by the National Science Foundation under grants NRI-1426907 and CMMI-1400167. (NRI-1426907 - National Science Foundation; CMMI-1400167 - National Science Foundation
- …
