1,337 research outputs found

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    Distributed Robust Set-Invariance for Interconnected Linear Systems

    Full text link
    We introduce a class of distributed control policies for networks of discrete-time linear systems with polytopic additive disturbances. The objective is to restrict the network-level state and controls to user-specified polyhedral sets for all times. This problem arises in many safety-critical applications. We consider two problems. First, given a communication graph characterizing the structure of the information flow in the network, we find the optimal distributed control policy by solving a single linear program. Second, we find the sparsest communication graph required for the existence of a distributed invariance-inducing control policy. Illustrative examples, including one on platooning, are presented.Comment: 8 Pages. Submitted to American Control Conference (ACC), 201

    Formal Synthesis of Control Strategies for Positive Monotone Systems

    Full text link
    We design controllers from formal specifications for positive discrete-time monotone systems that are subject to bounded disturbances. Such systems are widely used to model the dynamics of transportation and biological networks. The specifications are described using signal temporal logic (STL), which can express a broad range of temporal properties. We formulate the problem as a mixed-integer linear program (MILP) and show that under the assumptions made in this paper, which are not restrictive for traffic applications, the existence of open-loop control policies is sufficient and almost necessary to ensure the satisfaction of STL formulas. We establish a relation between satisfaction of STL formulas in infinite time and set-invariance theories and provide an efficient method to compute robust control invariant sets in high dimensions. We also develop a robust model predictive framework to plan controls optimally while ensuring the satisfaction of the specification. Illustrative examples and a traffic management case study are included.Comment: To appear in IEEE Transactions on Automatic Control (TAC) (2018), 16 pages, double colum

    Robotic swarm control from spatio-temporal specifications

    Full text link
    In this paper, we study the problem of controlling a two-dimensional robotic swarm with the purpose of achieving high level and complex spatio-temporal patterns. We use a rich spatio-temporal logic that is capable of describing a wide range of time varying and complex spatial configurations, and develop a method to encode such formal specifications as a set of mixed integer linear constraints, which are incorporated into a mixed integer linear programming problem. We plan trajectories for each individual robot such that the whole swarm satisfies the spatio-temporal requirements, while optimizing total robot movement and/or a metric that shows how strongly the swarm trajectory resembles given spatio-temporal behaviors. An illustrative case study is included.This work was partially supported by the National Science Foundation under grants NRI-1426907 and CMMI-1400167. (NRI-1426907 - National Science Foundation; CMMI-1400167 - National Science Foundation
    corecore