We introduce a class of distributed control policies for networks of
discrete-time linear systems with polytopic additive disturbances. The
objective is to restrict the network-level state and controls to user-specified
polyhedral sets for all times. This problem arises in many safety-critical
applications. We consider two problems. First, given a communication graph
characterizing the structure of the information flow in the network, we find
the optimal distributed control policy by solving a single linear program.
Second, we find the sparsest communication graph required for the existence of
a distributed invariance-inducing control policy. Illustrative examples,
including one on platooning, are presented.Comment: 8 Pages. Submitted to American Control Conference (ACC), 201