23 research outputs found

    Neutralizing Anti-Interleukin-1β Antibodies Reduce Ischemia-Related Interleukin-1β Transport Across the Blood-Brain Barrier in Fetal Sheep

    Get PDF
    Hypoxic ischemic insults predispose to perinatal brain injury. Pro-inflammatory cytokines are important in the evolution of this injury. Interleukin-1β (IL-1β) is a key mediator of inflammatory responses and elevated IL-1β levels in brain correlate with adverse neurodevelopmental outcomes after brain injury. Impaired blood-brain barrier (BBB) function represents an important component of hypoxic-ischemic brain injury in the fetus. In addition, ischemia-reperfusion increases cytokine transport across the BBB of the ovine fetus. Reducing pro-inflammatory cytokine entry into brain could represent a novel approach to attenuate ischemia-related brain injury. We hypothesized that infusions of neutralizing IL-1β monoclonal antibody (mAb) reduce IL-1β transport across the BBB after ischemia in the fetus. Fetal sheep were studied 24-h after 30-min of carotid artery occlusion. Fetuses were treated with placebo- or anti-IL-1β mAb intravenously 15-min and 4-h after ischemia. Ovine IL-1β protein expressed from IL-1β pGEX-2T vectors in E. Coli BL-21 cells was produced, purified, and radiolabeled with 125I. BBB permeability was quantified using the blood-to-brain transfer constant (Ki) with 125I-radiolabeled-IL-1β. Increases in anti-IL-1β mAb were observed in the brain of the mAb-treated group (P \u3c 0.001). Blood-to-brain transport of 125I-IL-1β was lower (P \u3c 0.04) across brain regions in the anti-IL-1β mAb treated than placebo-treated ischemic fetuses. Plasma 125I-IL-1β counts were higher (P \u3c 0.001) in the anti-IL-1β mAb than placebo-treated ischemic fetuses. Systemic infusions of anti-IL-1β mAb reduce IL-1β transport across the BBB after ischemia in the ovine fetus. Our findings suggest that conditions associated with increases in systemic pro-inflammatory cytokines and neurodevelopmental impairment could benefit from an anti-cytokine therapeutic strategy

    Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep

    No full text
    We examined the expression of tight junction (TJ) proteins in the cerebral cortex, cerebellum, and spinal cord of fetuses after maternal treatment with single and multiple courses of dexamethasone. Ewes received either single courses of four 6-mg dexamethasone or placebo injections every 12 h for 48 h between 104 and 107 days or the same treatment once a week between 76–78 and 104–107 days of gestation. TJ protein expression was determined by Western immunoblot analysis on tissue harvested at 105–108 days of gestation. Blood-brain barrier permeability has been previously quantified with the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid (39). After a single course of dexamethasone, claudin-5 increased (P < 0.05) in the cerebral cortex, occludin and claudin-1 increased in the cerebellum, and occludin increased in the spinal cord. After multiple dexamethasone courses, occludin and zonula occludens (ZO)-1 increased in the cerebral cortex, and occludin and claudin-1 increased in the cerebellum. Junctional adhesion molecule-A and ZO-2 expressions did not change. Linear regression comparing Ki to TJ proteins showed inverse correlations with claudin-1 and claudin-5 in the cerebral cortex after a single course and ZO-2 in the spinal cord after multiple courses and direct correlations with ZO-1 in the cerebellum and spinal cord after multiple courses. We conclude that maternal glucocorticoid treatment increases the expression of specific TJ proteins in vivo, patterns of TJ protein expression vary after exposure to single and multiple glucocorticoid courses, and decreases in blood-brain barrier permeability are associated with increases in claudin-1, claudin-5, and ZO-2 expression and decreases in ZO-1 expression. In utero glucocorticoid exposure alters the molecular composition of the barrier and affects fetal blood-brain barrier function

    Na+,K+-ATPase Activity and Subunit Protein Expression: Ontogeny and Effects of Exogenous and Endogenous Steroids on the Cerebral Cortex and Renal Cortex of Sheep

    No full text
    We examined the effects of development, exogenous, and endogenous glucocorticoids on Na+,K+-ATPase activity and subunit protein expression in ovine cerebral cortices and renal cortices. Ewes at 60%, 80%, and 90% gestation, newborns, and adults received 4 dexamethasone or placebo injections. Cerebral cortex Na+,K+-ATPase activity was higher (P < .05) in placebo-treated newborns than fetuses of placebo-treated ewes and adults, α1-expression was higher at 90% gestation than the other ages; α2-expression was higher in newborns than fetuses; α3-expression was higher in newborns than 60% gestation; β1-expression was higher in newborns than the other ages, and β2-expression higher at 60% than 80% and 90% gestation, and in adults. Renal cortex Na+,K+-ATPase activity was higher in placebo-treated adults and newborns than fetuses. Cerebral cortex Na+,K+-ATPase activity was higher in dexamethasone- than placebo-treated adults, and α1-expression higher in fetuses of dexamethasone- than placebo-treated ewes at 60% and 80% gestation. Renal cortex Na+,K+-ATPase activity and α1-expression were higher in fetuses of dexamethasone- than placebo-treated ewes at each gestational age, and β1-expression was higher in fetuses of dexamethasone- than placebo-treated ewes at 90% gestation and in dexamethasone- than placebo-treated adults. Cerebral cortex Na+,K+-ATPase activity, α1-expression, β1-expression, and renal cortex α1-expression correlated directly with increases in fetal cortisol. In conclusion, Na+,K+-ATPase activity and subunit expression exhibit specific developmental patterns in brain and kidney; exogenous glucocorticoids regulate activity and subunit expression in brain and kidney at some ages; endogenous increases in fetal cortisol regulate cerebral Na+,K+-ATPase, but exogenous glucocorticoids have a greater effect on renal than cerebral Na+,K+-ATPase
    corecore