2 research outputs found

    The European Forest Plant Species List (EuForPlant): Concept and applications

    Get PDF
    Question When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species' affinity to forests vary between European regions? Location Temperate and boreal forest biome of Northwestern and Central Europe. Methods We compiled EuForPlant, a new extensive list of forest vascular plant species in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional "O" category was distinguished, covering species typical for non-forest vegetation. Results EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of forest affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions. Conclusions The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity

    Measuring size and composition of species pools : a comparison of dark diversity estimates

    Get PDF
    CITATION: De Bello, F. et al. 2016. Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 6(12):4088–4101, doi:10.1002/ece3.2169The original publication is available at http://onlinelibrary.wiley.comEcological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods need attention, especially when dark diversity is estimated at the plot level.http://onlinelibrary.wiley.com/wol1/doi/10.1002/ece3.2169/fullPublisher's versio
    corecore