112 research outputs found

    Morphology, structure and optical properties of low bandgap organic-inorganic halide perovskite based on CH₃NH₃SnxPb₁₋ₓI₃

    Get PDF
    Herein, we investigate morphology, structure and optical properties of low band gap organic-inorganic halide perovskite based on a mixture of lead and tin as the divalent cation in ABX3 structure. A significant change in morphology of CH3NH3SnxPb1−xI3 perovskite with x as well as an alteration in crystal structure from I4cm (β-phase) to pseudocubic P4mm (α-phase) space groups is observed when Sn is the dominant divalent cation (x ≥ 0.5). Photo thermal defection optical absorption spectroscopy (PDS) and photoluminescence (PL) of CH3NH3SnxPb1−xI3 show the non-linear change in the band edge of perovskite. The bandgap as low as 1.17 eV and the most red-shifted PL at 1035nm is achieved for perovskite with x=0.8. In addition, higher electronic disorder is measured for CH3NH3SnxPb1−xI3 compounds with higher x

    Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO.

    Get PDF
    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics.The authors acknowledge the support of the Cambridge Overseas and Commonwealth Trust, the Rutherford Foundation of New Zealand, Girton College Cambridge. This work has been funded by ERC Advanced Investigator Grant, Novox, ERC-2009-adG247276 and by the EPSRC (under RGS3717)

    Interface engineering of mesoscopic hybrid organic-inorganic perovskite solar cells

    Get PDF
    We report on the optimization of the interfacial properties of titania in mesoscopic CH3NH3PbI3 perovskite solar cells (PSCs). Modification of the mesoporous titania (mp-TiO2) film by TiCl4 treatment substantially reduced the surface traps, as is evident from the sharpness of the absorption edge with a significant reduction in Urbach energy (from 320 to 140 meV) determined from photothermal deflection spectroscopy, and led to an order of magnitude enhancement in the bulk electron mobility and corresponding decrease in the transport activation energy (from 170 to 90 meV) within a device. After optimization of the photoanode–perovskite interface using various sizes of TiO2 nanoparticles, the best photovoltaic efficiency of 16.3% was achieved with the mesoporous TiO2 composed of 36 nm sized nanoparticles. The improvement in device performance can be attributed to the enhanced charge collection efficiency that is driven by improved charge transport in the mesoporous TiO2 layer. Also, the decreased recombination at the TiO2–perovskite interface and better perovskite coverage play important roles

    Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications.

    Get PDF
    The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V-1 s-1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.The authors acknowledge funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No.°263042. J.S. wants to thank the Engineering and Physical Sciences Research Council and the A.G. Leventis Foundation for funding.This is the final version of the article. It first appeared at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201404375/ful

    Sub-10 fs Time-Resolved Vibronic Optical Microscopy.

    Get PDF
    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500-650 nm) and near-infrared (650-950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3-xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm-1 spectral resolution covering the 100-2000 cm-1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems

    What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    Get PDF
    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.Engineering and Physical Sciences Research Council, Winton Programme for the Physics of Sustainability, University of Cambridge, China Scholarship Council, SoltechThis is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.6b0513

    EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval

    Full text link
    Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR). In this paper, we aim to improve distillation methods that pave the way for the resource-efficient deployment of such models in practice. Inspired by our theoretical analysis of the teacher-student generalization gap for IR models, we propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model. Unlike existing teacher score-based distillation methods, our proposed approach employs embedding matching tasks to provide a stronger signal to align the representations of the teacher and student models. In addition, it utilizes query generation to explore the data manifold to reduce the discrepancies between the student and the teacher where training data is sparse. Furthermore, our analysis also motivates novel asymmetric architectures for student models which realizes better embedding alignment without increasing online inference cost. On standard benchmarks like MSMARCO, we show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance

    Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies.

    Get PDF
    Sb2S3 sensitized solar cells are a promising alternative to devices employing organic dyes. The manufacture of Sb2S3 absorber layers is however slow and cumbersome. Here, we report the modified aqueous chemical bath synthesis of Sb2S3 absorber layers for sensitized solar cells. Our method is based on the hydrolysis of SbCl3 to complex antimony ions decelerating the reaction at ambient conditions, in contrast to the usual low temperature deposition protocol. This simplified deposition route allows the manufacture of sensitized mesoporous-TiO2 solar cells with power conversion efficiencies up to η = 5.1%. Photothermal deflection spectroscopy shows that the sub-bandgap trap-state density is lower in Sb2S3 films deposited with this method, compared to standard deposition protocols.Cambridge Trust, the Mott Fund for Physics of the Environment and Corpus Christi College Cambridge for funding. A.S. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC).This is the final version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/c5cc01966d#!divAbstract

    Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance

    Get PDF
    Zn1−xMgxO/Cu2O heterojunctions were successfully fabricated in open-air at low temperatures via atmospheric atomic layer deposition of Zn1−xMgxO on thermally oxidized cuprous oxide. Solar cells employing these heterojunctions demonstrated a power conversion efficiency exceeding 2.2% and an open-circuit voltage of 0.65V. Surface oxidation of Cu2O to CuO prior to and during Zn1−xMgxO deposition was identified as the limiting factor to obtaining a high quality heterojunction interface. Optimization of deposition conditions to minimize Cu2O surface oxidation led to improved device performance, tripling the open-circuit voltage and doubling the short-circuit current density. These values are the highest reported for a ZnO/Cu2O interface formed in air, and highlight atmospheric ALD as a promising technique for inexpensive and scalable fabrication of ZnO/Cu2O heterojunctions.Cuprous oxideSpatial atmospheric ALDZnO/Cu2O heterojunctionInorganic solar cel
    corecore