217 research outputs found
Surface potential of chalcopyrite films measured by KPFM
Atomic force microscopy is widely used to characterize the surface topography of a variety of samples. Kelvin probe force microscopy KPFM additionally allows determining images of the surface potential with nanometer resolution. The KPFM technique will be introduced and studies on surfaces of chalcopyrite semiconductors for solar cell absorbers will be presented. It is shown that operation in ultra high vacuum UHV is required to obtain meaningful work function values. Different methods for obtaining UHV clean surfaces are presented and KPFM studies on these are compared. Surfaces where prepared by in vacuum deposition, inert gas transfer, in vacuum decapping of a protective Se cap and a peel off method. Finally, a sputter annealing cycle also allows to obtain well suited surfaces for KPFM studies. Employing KPFM, variations in the local surface potential at grain boundaries of polycrystalline CuGaSe2 films were observed. A potential drop indicates the presence of charged defects at grain boundaries. Furthermore, different electronic activity was found for different grain boundaries, as concluded from studies under illumination. Using laterally resolved surface photovoltage, a Cu2 amp; 8722;xSe impurity phase could be observed in CuGaSe
Microscopic characterization of individual grain boundaries in Cu III VI2 chalcopyrites
The role of grain boundaries in polycrystalline Cu III VI2 absorber material for thin film photovoltaics has not been fully understood and is currently under discussion. Recently, intensive efforts have been devoted to the characterization of the properties of individual grain boundaries using microscopic techniques, including Kelvin probe force microscopy KPFM . KPFM provides local electronic information by measuring the surface potential in addition to the topography. We introduce the KPFM method and present simulations assessing the technique s limitations with respect to spatial resolution regarding the measurement of grain boundary properties. KPFM studies of individual GBs in the Cu In,Ga Se2 materials system are reviewed and critically discussed, considering also results from other microscopic characterization technique
Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy
Employing higher oscillation modes of microcantilevers promises higher sensitivity when applied as sensors, for example, for mass detection or in atomic force microscopy. Introducing a special cantilever geometry, we show that the relation between the resonance frequencies of the first and second resonance modes can be modified to separate them further or to bring them closer together. In atomic force microscopy the latter is of special interest as the photodiode of the beam deflection detection limits the accessible frequency range. Using finite element simulations, we optimized the design of the modified cantilever geometry for a maximum reduction of the frequency of the second oscillation mode with respect to the first mode. Cantilevers were fabricated by silicon micromachining and subsequently utilized in an ultrahigh vacuum Kelvin probe force microscope imaging the surface potential of C60 on graphit
Evaluation of Kelvin probe force microscopy for imaging grain boundaries in chalcopyrite thin films
In view of the outstanding performance of polycrystalline thin film solar cells on the basis of Cu In,Ga Se2, the electrical activity at grain boundaries currently receives considerable attention. Recently, Kelvin probe force microscopy KPFM has been applied to characterize of the properties of individual grain boundaries, observing a drop in the surface potential in many cases. We present finite element simulations of the electrostatic forces to assess the experimental resolution of KPFM. Depending on the tip sample distance, the observed drop in the work function amounts to only a fraction of the real surface potential drop. The simulations are considered for different grain boundary models and consequences for the quantitative evaluation of experimental results are discusse
Evidence for a neutral grain boundary barrier in chalcopyrites
Single grain boundaries in CuGaSe2 have been grown epitaxially. Hall measurements indicate a barrier of 30 40 meV to majority carrier transport. Nevertheless, local surface potential measurements show the absence of space charge around the grain boundary, i.e. it is neutral. Theoretical calculations [Persson and Zunger, Phys. Rev. Lett. 91, 266401 2003 ] have predicted a neutral barrier for the present S3 grain boundary. Thus, we have experimentally shown the existence of a neutral grain boundary barrier, however, smaller than theoretically predicte
Electrostatic potentials at Cu In,Ga Se2 grain boundaries Experiment and simulations
In the present Letter, we report on a combined ab initio density functional theory calculation, multislice simulation, and electron holography study, performed on a amp; 931;9 grain boundary GB in a CuGaSe2 bicrystal, which exhibits a lower symmetry compared with highly symmetric amp; 931; 3 GBs. We find an electrostatic potential well at the amp; 931;9 GB of 0.8 V in depth and 1.3 nm in width, which in comparison with results from amp; 931;3 and random GBs exhibits the trend of increasing potential well depths with lower symmetry. The presence of this potential well at the amp; 931; 9 GB can be explained conclusively by a reduced density of atoms at the GB. Considering experimental limitations in resolution, we demonstrate quantitative agreement of experiment and theor
A Multi-scale Approach for Simulations of Kelvin Probe Force Microscopy with Atomic Resolution
The distance dependence and atomic-scale contrast observed in nominal contact
potential difference (CPD) signals recorded by KPFM on surfaces of insulating
and semiconducting samples, have stimulated theoretical attempts to explain
such effects. We attack this problem in two steps. First, the electrostatics of
the macroscopic tip-cantilever-sample system is treated by a finite-difference
method on an adjustable nonuniform mesh. Then the resulting electric field
under the tip apex is inserted into a series of atomistic wavelet-based density
functional theory (DFT) calculations. Results are shown for a realistic neutral
but reactive silicon nano-scale tip interacting with a NaCl(001) sample.
Bias-dependent forces and resulting atomic displacements are computed to within
an unprecedented accuracy. Theoretical expressions for amplitude modulation
(AM) and frequency modulation (FM) KPFM signals and for the corresponding local
contact potential differences (LCPD) are obtained by combining the macroscopic
and atomistic contributions to the electrostatic force component generated at
the voltage modulation frequency, and evaluated for several tip oscillation
amplitudes A up to 10 nm. Being essentially constant over a few Volts, the
slope of atomistic force versus bias is the basic quantity which determines
variations of the atomic-scale LCPD contrast. Already above A = 0.1 nm, the
LCPD contrasts in both modes exhibit almost the same spatial dependence as the
slope. In the AM mode, this contrast is approximately proportional to
, but remains much weaker than the contrast in the FM mode, which
drops somewhat faster as A is increased. These trends are a consequence of the
macroscopic contributions to the KPFM signal, which are stronger in the AM-mode
and especially important if the sample is an insulator even at sub-nanometer
separations where atomic-scale contrast appears.Comment: 19 pages, 13 figure
Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics
The targeted global decarbonization demands the urgent replacement of conventional fossil fuel with low carbon technologies. For instance, solar energy is abundant, inexhaustible, non-polluting, and low-priced; however, to produce energy on a large scale with reliable, cost-efficient, and environmentally friendly methods remains a challenge. The outstanding optical properties of Cu(In,Ga)Se2 thin film photovoltaics and their intrinsic compatibility with industrial-scale production are paving the way towards this technology. However, most of the activity in the field relies on the use of non-environmentally friendly methodologies to achieve solution-processed flexible and lightweight photovoltaics with significant efficiencies. Importantly, there is a search for more sustainable alternatives that are compatible with roll-to-roll industry to improve the cost-effectiveness and sustainability of photovoltaics without compromising the photovoltaic performance.
Herein, we review cost-efficient and sustainable fabrication methodologies that complement the current high-
energy-demanding vacuum-based fabrication of Cu(In,Ga)Se2 photovoltaics. The existent non-vacuum deposition methods of Cu(In,Ga)Se2 photoabsorbers are presented and precursors and solvents used in ink formulations are discussed in terms of sustainability. The approaches resulting in most efficient photovoltaic cells are highlighted. Finally, all-solution-processed Cu(In,Ga)Se2 photovoltaics are reviewed, along with the non-vacuum deposition methods of the individual layers, contributing to an even higher throughput and low-cost production. This review highlights the relevance and potential of sustainable non-vacuum methodologies, as well as the need of further investigation in this field to ultimately give access to high-end CIGS PVs with low-cost fabrication.We thank the members of the Nanochemistry Research Group (http://nanochemgroup.org) at INL for insightful discussions and support. This study was conducted with financial support from the Portuguese funding institution FCT – Fundaç ̃ao para Ciˆencia e Tecnologia (PTDC/CTM-ENE/5387/2014, PTDC/NAN-MAT/28745/2017, UID/FIS/04650/2020, UID/QUI/0686/2020, PTDC/FIS-MAC/28157/2017
and SFRH/BD/121780/2016) and Basque Government Industry Department (ELKARTEK and HAZITEK)
- …