2,952 research outputs found

    Linkage of modules over Cohen-Macaulay rings

    Get PDF
    Inspired by the works in linkage theory of ideals, the concept of sliding depth of extension modules is defined to prove the Cohen-Macaulyness of linked module if the base ring is merely Cohen-Macaulay. Some relations between this new condition and other module-theory conditions such as G-dimension and sequentially Cohen-Macaulay are established. By the way several already known theorems in linkage theory are improved or recovered by new approaches.Comment: 12 Page

    Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data

    Get PDF
    In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years (from 2003 to 2010) of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time series, were compared to related satellite products, including the total surface phytoplankton, i.e. total chlorophyll a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind-speed, which are known to affect phytoplankton dynamics. For each region, the anomalies and linear trends of the monitored parameters over the period of this study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophore chlorophyll a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass dynamics on the compared geophysical variables. This suggests that PhytoDOAS is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution

    Limits to ion energy control in high density glow discharges: Measurement of absolute metastable ion concentrations

    Get PDF
    Unprecedented demands for uniformity, throughput, anisotropy, and damage control in submicron pattern transfer are spurring development of new, low pressure, high charge density plasma reactors. Wafer biasing, independent of plasma production in these new systems is intended to provide improved ion flux and energy control so that selectivity can be optimized and damage can be minimized. However, as we show here, an inherent property of such discharges is the generation of significant densities of excited, metastable ionic states that can bombard workpiece surfaces with higher translational and internal energy. Absolute metastable ion densities are measured using the technique of self-absorption, while the corresponding velocity distributions and density scaling with pressure and electron density are measured using laser-induced fluorescence. For a low pressure, helicon-wave excited plasma, the metastable ion flux is at least 24% of the total ion flux to device surfaces. Because the metastable ion density scales roughly as the reciprocal of the pressure and as the square of the electron density, the metastable flux is largest in low pressure, high charge density plasmas. This metastable ion energy flux effectively limits ion energy and flux control in these plasma reactors, but the consequences for etching and deposition of thin films depend on the material system and remain an open question

    Tsallis holographic dark energy under Complex form of Quintessence model

    Full text link
    In this paper, we use a Tsallis holographic dark energy model in two forms, interacting and non-interacting cases, to acquire some parameters as the equation of state for the energy density of the Tsallis model in the FRW universe concerning the complex form of quintessence model. We will study the cosmology of complex quintessence by revamping the potential and investigating the scalar field dynamics. Then we analyze (ω−ω′\omega-\omega') and stability in two cases, i.e., non-interacting and interacting. We will explore whether these cases describe a real universe by calculating fractional energy density ΩD\Omega_{D} and concerning two parts of the quintessence field effect ( complex and real part ) by considering the real part of this field to be a slow-roll field. We know that the part in which the fractional energy density (ΩD>1\Omega_{D} > 1) does not describe a real universe. Also, we specified an interacting coupling parameter b2b^{2} that depends on the constant parameter of the Tsallis holographic model (δ\delta) with respect to fractional energy density (0.730.73). Unlike independence between the fractional energy density and interacting coupling in the real quintessence model, we determine a relationship among these parameters in this theory. Finally, by plotting some figures, we specify the features of (ω−ω′\omega-\omega') and (νs2\nu_{s}^{2}) in two cases and compare the result with each other.Comment: 22 pages, 4 figures, Accepted for publication in Communications in Theoretical Physic

    Baryon Binding Energy in Sakai-Sugimoto Model

    Full text link
    The binding energy of baryon has been studied in the dual AdS5×S5AdS_5\times S^5 string theory with a black hole interior. In this picture baryon is constructed of a D5D_5 brane vertex wrapping on S5S^5 and NcN_c fundamental strings connected to it. Here, we calculate the baryon binding energy in Sakai-Sugimoto model with a D4/D8/D8ˉD_4/D_8/\bar{D_8} in which the supersymmetry is completely broken. Also we check the TT dependence of the baryon binding energy. We believe that this model represents an accurate description of baryons due to the existence of Chern-Simones coupling with the gauge field on the brane. We obtain an analytical expression for the baryon binding energy . In that case we plot the baryon binding energy in terms of radial coordinate. Then by using the binding energy diagram, we determine the stability range for baryon configuration. And also the position and energy of the stable equilibrium point is obtained by the corresponding diagram. Also we plot the baryon binding energy in terms of temperature and estimate a critical temperature in which the baryon would be dissociated.Comment: 14 pages, 1 fi
    • …
    corecore