758 research outputs found
Key agreement for heterogeneous mobile ad-hoc groups
Security of various group-oriented applications for mobile ad-hoc groups requires a group secret shared between all participants. Contributory Group Key Agreement (CGKA) protocols can be used in mobile ad-hoc scenarios due to the absence of any trusted central authority (group manager) that actively participates in the computation of the group key. Members of spontaneously formed mobile ad-hoc groups are usually equipped with different kinds of mobile devices with varying performance capabilities. This heterogeneity opens new ways for the design of CGKA protocols and states additional security requirements with regard to the trustworthiness of the devices. In this paper we propose a CGKA protocol for mobile ad hoc groups that fairly distributes the computation costs amongst mobile devices by taking into account their performance limitations and preventing possible cheating through Trusted Computing techniques
Secure fingerprinting on sound foundations
The rapid development and the advancement of digital technologies open a variety of opportunities to consumers and content providers for using and trading digital goods. In this context, particularly the Internet has gained a major ground as a worldwiede platform for exchanging and distributing digital goods. Beside all its possibilities and advantages digital technology can be misuesd to breach copyright regulations: unauthorized use and illegal distribution of intellectual property cause authors and content providers considerable loss. Protections of intellectual property has therefore become one of the major challenges of our information society. Fingerprinting is a key technology in copyright protection of intellectual property. Its goal is to deter people from copyright violation by allowing to provably identify the source of illegally copied and redistributed content. As one of its focuses, this thesis considers the design and construction of various fingerprinting schemes and presents the first explicit, secure and reasonably efficient construction for a fingerprinting scheme which fulfills advanced security requirements such as collusion-tolerance, asymmetry, anonymity and direct non-repudiation. Crucial for the security of such s is a careful study of the underlying cryptographic assumptions. In case of the fingerprinting scheme presented here, these are mainly assumptions related to discrete logarithms. The study and analysis of these assumptions is a further focus of this thesis. Based on the first thorough classification of assumptions related to discrete logarithms, this thesis gives novel insights into the relations between these assumptions. In particular, depending on the underlying probability space we present new reuslts on the reducibility between some of these assumptions as well as on their reduction efficency.Die Fortschritte im Bereich der Digitaltechnologien bieten Konsumenten,
Urhebern und Anbietern große Potentiale für innovative Geschäftsmodelle
zum Handel mit digitalen GĂĽtern und zu deren Nutzung. Das Internet stellt
hierbei eine interessante Möglichkeit zum Austausch und zur Verbreitung
digitaler GĂĽter dar. Neben vielen Vorteilen kann die Digitaltechnik jedoch
auch missbräuchlich eingesetzt werden, wie beispielsweise zur Verletzung
von Urheberrechten durch illegale Nutzung und Verbreitung von Inhalten,
wodurch involvierten Parteien erhebliche Schäden entstehen können. Der
Schutz des geistigen Eigentums hat sich deshalb zu einer der besonderen
Herausforderungen unseres Digitalzeitalters entwickelt.
Fingerprinting ist eine SchlĂĽsseltechnologie zum Urheberschutz. Sie hat
das Ziel, vor illegaler Vervielfältigung und Verteilung digitaler Werke abzuschrecken, indem sie die Identifikation eines Betrügers und das Nachweisen
seines Fehlverhaltens ermöglicht. Diese Dissertation liefert als eines ihrer Ergebnisse die erste explizite, sichere und effiziente Konstruktion, welche die
BerĂĽcksichtigung besonders fortgeschrittener Sicherheitseigenschaften wie
Kollusionstoleranz, Asymmetrie, Anonymität und direkte Unabstreitbarkeit
erlaubt.
Entscheidend für die Sicherheit kryptographischer Systeme ist die präzise
Analyse der ihnen zugrunde liegenden kryptographischen Annahmen. Den
im Rahmen dieser Dissertation konstruierten Fingerprintingsystemen liegen
hauptsächlich kryptographische Annahmen zugrunde, welche auf diskreten
Logarithmen basieren. Die Untersuchung dieser Annahmen stellt einen weiteren
Schwerpunkt dieser Dissertation dar. Basierend auf einer hier erstmals
in der Literatur vorgenommenen Klassifikation dieser Annahmen werden
neue und weitreichende Kenntnisse über deren Zusammenhänge gewonnen.
Insbesondere werden, in Abhängigkeit von dem zugrunde liegenden Wahrscheinlichkeitsraum, neue Resultate hinsichtlich der Reduzierbarkeit dieser
Annahmen und ihrer Reduktionseffizienz erzielt
Anonymous Benefactor, World-Renowned Jazz Artists Ensure Success of Second Jazz Summer Camp at UD
News release announces that an anonymous investor recently stepped forward with a substantial scholarship donation to help ensure that young musicians can participate in the University of Dayton\u27s inaugural summer jazz camp in 2000
Hitchcock Movies and Write-Ins Dominate Film Historian\u27s Vote for AFI\u27s 100 Scariest Films
News release announces that Tony Macklin was asked by the American Film Institute to be a juror in its latest ranking, naming the 100 scariest American films
Software Grand Exposure: SGX Cache Attacks Are Practical
Side-channel information leakage is a known limitation of SGX. Researchers
have demonstrated that secret-dependent information can be extracted from
enclave execution through page-fault access patterns. Consequently, various
recent research efforts are actively seeking countermeasures to SGX
side-channel attacks. It is widely assumed that SGX may be vulnerable to other
side channels, such as cache access pattern monitoring, as well. However, prior
to our work, the practicality and the extent of such information leakage was
not studied.
In this paper we demonstrate that cache-based attacks are indeed a serious
threat to the confidentiality of SGX-protected programs. Our goal was to design
an attack that is hard to mitigate using known defenses, and therefore we mount
our attack without interrupting enclave execution. This approach has major
technical challenges, since the existing cache monitoring techniques experience
significant noise if the victim process is not interrupted. We designed and
implemented novel attack techniques to reduce this noise by leveraging the
capabilities of the privileged adversary. Our attacks are able to recover
confidential information from SGX enclaves, which we illustrate in two example
cases: extraction of an entire RSA-2048 key during RSA decryption, and
detection of specific human genome sequences during genomic indexing. We show
that our attacks are more effective than previous cache attacks and harder to
mitigate than previous SGX side-channel attacks
Execution Integrity with In-Place Encryption
Instruction set randomization (ISR) was initially proposed with the main goal
of countering code-injection attacks. However, ISR seems to have lost its
appeal since code-injection attacks became less attractive because protection
mechanisms such as data execution prevention (DEP) as well as code-reuse
attacks became more prevalent.
In this paper, we show that ISR can be extended to also protect against
code-reuse attacks while at the same time offering security guarantees similar
to those of software diversity, control-flow integrity, and information hiding.
We present Scylla, a scheme that deploys a new technique for in-place code
encryption to hide the code layout of a randomized binary, and restricts the
control flow to a benign execution path. This allows us to i) implicitly
restrict control-flow targets to basic block entries without requiring the
extraction of a control-flow graph, ii) achieve execution integrity within
legitimate basic blocks, and iii) hide the underlying code layout under
malicious read access to the program. Our analysis demonstrates that Scylla is
capable of preventing state-of-the-art attacks such as just-in-time
return-oriented programming (JIT-ROP) and crash-resistant oriented programming
(CROP). We extensively evaluate our prototype implementation of Scylla and show
feasible performance overhead. We also provide details on how this overhead can
be significantly reduced with dedicated hardware support
ARM2GC: Succinct Garbled Processor for Secure Computation
We present ARM2GC, a novel secure computation framework based on Yao's
Garbled Circuit (GC) protocol and the ARM processor. It allows users to develop
privacy-preserving applications using standard high-level programming languages
(e.g., C) and compile them using off-the-shelf ARM compilers (e.g., gcc-arm).
The main enabler of this framework is the introduction of SkipGate, an
algorithm that dynamically omits the communication and encryption cost of the
gates whose outputs are independent of the private data. SkipGate greatly
enhances the performance of ARM2GC by omitting costs of the gates associated
with the instructions of the compiled binary, which is known by both parties
involved in the computation. Our evaluation on benchmark functions demonstrates
that ARM2GC not only outperforms the current GC frameworks that support
high-level languages, it also achieves efficiency comparable to the best prior
solutions based on hardware description languages. Moreover, in contrast to
previous high-level frameworks with domain-specific languages and customized
compilers, ARM2GC relies on standard ARM compiler which is rigorously verified
and supports programs written in the standard syntax.Comment: 13 page
How Far Removed Are You? Scalable Privacy-Preserving Estimation of Social Path Length with Social PaL
Social relationships are a natural basis on which humans make trust
decisions. Online Social Networks (OSNs) are increasingly often used to let
users base trust decisions on the existence and the strength of social
relationships. While most OSNs allow users to discover the length of the social
path to other users, they do so in a centralized way, thus requiring them to
rely on the service provider and reveal their interest in each other. This
paper presents Social PaL, a system supporting the privacy-preserving discovery
of arbitrary-length social paths between any two social network users. We
overcome the bootstrapping problem encountered in all related prior work,
demonstrating that Social PaL allows its users to find all paths of length two
and to discover a significant fraction of longer paths, even when only a small
fraction of OSN users is in the Social PaL system - e.g., discovering 70% of
all paths with only 40% of the users. We implement Social PaL using a scalable
server-side architecture and a modular Android client library, allowing
developers to seamlessly integrate it into their apps.Comment: A preliminary version of this paper appears in ACM WiSec 2015. This
is the full versio
- …