33 research outputs found
Satellite observations reveal extreme methane leakage from a natural gas well blowout
Methane emissions due to accidents in the oil and natural gas sector are very challenging tomonitor, and hence are seldomconsidered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio's reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions
Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050)
India currently experiences degraded air quality, with future economic development leading to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy efficiency technologies. The impacts of individual source-sectors on PM2.5 concentrations were assessed through GEOS-Chem model simulations of spatially and temporally resolved particulate matter concentrations, followed by population-weighted aggregation to national and state levels. PM2.5 pollution is a pan-India problem, with a regional character, not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 standard (40 µg/m3). Future evolution of emissions under current regulation or under promulgated or proposed regulation, yield deterioration in future air-quality in 2030 and 2050. Only under a scenario where more ambitious measures are introduced, promoting a total shift away from traditional biomass technologies and a very large shift (80–85 %) to non-fossil electricity generation was an overall reduction in PM2.5 concentrations below 2015 levels achieved. In this scenario, concentrations in 20 states and six union territories would fall below the national standard. However, even under this ambitious scenario, 10 states (including Delhi) would fail to comply with the national standard through to 2050. Under present day (2015) emissions, residential biomass fuel use for cooking and heating is the largest single sector influencing outdoor air pollution across most of India. Agricultural residue burning is the next most important source, especially in north-west and north India, while in eastern and peninsular India, coal burning in thermal power plants and industry are important contributors. The relative influence of anthropogenic dust and total dust is projected to increase in all future scenarios, largely from decreases in the influence of other PM2.5 sources. Overall, the findings suggest a large regional background of PM2.5 pollution (from residential biomass, agricultural residue burning and power plant and industrial coal), underlying that from local sources (transportation, brick kiln, distributed diesel) in highly polluted areas
The methane imperative
Anthropogenic methane (CH4) emissions increases from the period 1850–1900 until 2019 are responsible for around 65% as much warming as carbon dioxide (CO2) has caused to date, and large reductions in methane emissions are required to limit global warming to 1.5°C or 2°C. However, methane emissions have been increasing rapidly since ~2006. This study shows that emissions are expected to continue to increase over the remainder of the 2020s if no greater action is taken and that increases in atmospheric methane are thus far outpacing projected growth rates. This increase has important implications for reaching net zero CO2 targets: every 50 Mt CH4 of the sustained large cuts envisioned under low-warming scenarios that are not realized would eliminate about 150 Gt of the remaining CO2 budget. Targeted methane reductions are therefore a critical component alongside decarbonization to minimize global warming. We describe additional linkages between methane mitigation options and CO2, especially via land use, as well as their respective climate impacts and associated metrics. We explain why a net zero target specifically for methane is neither necessary nor plausible. Analyses show where reductions are most feasible at the national and sectoral levels given limited resources, for example, to meet the Global Methane Pledge target, but they also reveal large uncertainties. Despite these uncertainties, many mitigation costs are clearly low relative to real-world financial instruments and very low compared with methane damage estimates, but legally binding regulations and methane pricing are needed to meet climate goals
Indian emissions of technology-linked NMVOCs with chemical speciation: An evaluation of the SAPRC99 mechanism with WRF-CAMx simulations
Non-methane volatile organic compounds (NMVOCs) are important precursors to reactions producing tropospheric ozone and secondary organic aerosols. The present work uses a detailed technology-linked NMVOC emission database for India, along with a standard mapping method to measured NMVOC profiles, to develop speciated NMVOC emissions, which are aggregated into multiple chemical mechanisms used in chemical transport models. The fully speciated NMVOC emissions inventory with 423 constituent species, was regrouped into model-ready reactivity classes of the RADM2, SAPRC99 and CB-IV chemical mechanisms, and spatially distributed at 25 x 25 km(2) resolution, using source-specific spatial proxies. Emissions were considered from four major sectors, i.e. industry, transport, agriculture and residential and from non-combustion activities (use of solvents and paints). It was found that residential cooking with biomass fuels, followed by agricultural residue burning in fields and on-road transport, were largest contributors to the highest reactivity group of NMVOC emissions from India. The emissions were evaluated using WRF-CAMx simulations, using the SAPRC99 photochemical mechanism, over India for contrasting months of April, July and October 2010. Modelled columnar abundance of NO2, CO and O-3 agreed well with satellite observations both in magnitude and spatial distribution, in the three contrasting months. Evaluation of monthly and spatial differences between model predictions and observations indicates the need for further refinement of the spatial distribution of NOX emissions, spatio-temporal distribution of agricultural residue burning emissions. (C) 2016 Elsevier Ltd. All rights reserved
Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India
The difference in land surface temperature (LST) between an urban region and its nearby non-urban region, known as surface urban heat island intensity (SUHII), is usually positive as reported in earlier studies. India has experienced unprecedented urbanization over recent decades with an urban population of 380 million. Here, we present the first study of the diurnal and seasonal characteristics of SUHII in India. We found negative SUHII over a majority of urban areas during daytime in pre-monsoon summer (MAM), contrary to the expected impacts of urbanization. This unexpected pattern is associated with low vegetation in non-urban regions during dry pre-monsoon summers, leading to reduced evapotranspiration (ET). During pre-monsoon summer nights, a positive SUHII occurs when urban impacts are prominent. Winter daytime SUHII becomes positive in Indo-Gangetic plain. We attribute such diurnal and seasonal behaviour of SUHII to the same of the differences in ET between urban and non-urban regions. Higher LST in non-urban regions during pre-monsoon summer days results in intensified heatwaves compared to heatwaves in cities, in contrast to presumptions made in the literature. These observations highlight the need for re-evaluation of SUHII in India for climate adaptation, heat stress mitigation, and analysis of urban micro-climates
Functionalization of cardanol: towards biobased polymers and additives
International audienceAmong the renewable resource materials, cashew nut shell liquid (CNSL) is considered as an important starting material due to its unique structural features, abundant availability and low cost. A large number of chemicals and products have been developed starting from CNSL by taking advantage of the three reactive sites, namely, phenolic hydroxyl, aromatic ring and unsaturation(s) in the alkenyl side chain. This comprehensive review deals with general information on CNSL, its purification and separation methods, reactivity and applications in polymer chemistry