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Abstract. India currently experiences degraded air quality, with future economic development leading to challenges for air 

quality management.  Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated 

for 2015-2050, under specific pathways of diffusion of cleaner and more energy efficiency technologies. The impacts of 

individual source-sectors on PM2.5 concentrations were assessed through GEOS-Chem model simulations of spatially and 

temporally resolved particulate matter concentrations, followed by population-weighted aggregation to national and state 25 

levels. PM2.5 pollution is a pan-India problem, with a regional character, not limited to urban areas or megacities. Under present 

day emissions, levels in most states exceeded the national PM2.5 standard (40 µg/m3). Future evolution of emissions under 

current regulation or under promulgated or proposed regulation, yield deterioration in future air-quality in 2030 and 2050. 

Only under a scenario where more ambitious measures are introduced, promoting a total shift away from traditional biomass 

technologies and a very large shift (80-85%) to non-fossil electricity generation, was an overall reduction in PM2.5 30 

concentrations below 2015 levels achieved. In this scenario, concentrations in 20 states and six union territories would fall 

below the national standard. However, even under this ambitious scenario, 10 states (including Delhi) would fail to comply 

with the national standard through to 2050. Under present day (2015) emissions, residential biomass fuel use for cooking and 

heating is the largest single sector influencing outdoor air pollution across most of India. Agricultural residue burning is the 

next most important source, especially in north-west and north India, while in eastern and peninsular India, coal burning in 35 

thermal power plants and industry are important contributors. The relative influence of anthropogenic dust and total dust is 
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projected to increase in all future scenarios, largely from decreases in the influence of other PM2.5 sources. Overall, the findings 

suggest a large regional background of PM2.5 pollution (from residential biomass, agricultural residue burning and power plant 

and industrial coal), underlying that from local sources (transportation, brick kiln, distributed diesel) in highly polluted areas. 

1.  Introduction 

India hosts the world’s second largest population, but accounts for only 6% of the world’s total primary energy use (IEA, 5 

2015). However, India is undergoing dynamic transformation as an emerging economy with impacts on a multitude of energy-

use activities in industry and transport sectors, as well as in residential, agricultural and informal industry sectors (Sadavarte 

and Venkataraman, 2014; Pandey et al. 2014). With expansion in power generation (CEA, 2016) and industrial production 

(Planning Commission, Government of India, 2013), emissions from these sectors were estimated to have increased about 

two-fold between 1995-2015 (Sadavarte and Venkataraman, 2014).  There is a steady demand for motorized vehicles for both 10 

personal and public transport, with an increase in ownership of motorized two-wheeler motorcycles and scooters and four-

wheeler cars (MoRTH, 2012.), in both rural and urban areas. Traditional technologies, and the use of solid biomass fuels, are 

widespread in the residential sector (cooking with biomass fuel cook stoves and lighting with kerosene wick lamps), the 

agricultural sector (open burning of agricultural residues for field clearing), and the informal industry sector, (brick production, 

processing of food and agricultural products). Ambient PM2.5 (particle mass in a size fraction with diameter smaller than 2.5 15 

µm) concentrations are influenced by emissions of both primary or directly emitted PM2.5, and its precursor gases, including 

SO2, NH3, NOx, and NMVOCs (Non-methane volatile organic compounds), whose atmospheric reactions yield secondary 

particulate sulphate, nitrate and organic carbon, while reactions of NOx and NMVOCs also increase ozone levels. Ozone 

precursor gases and particulate black carbon and organic carbon (BC and OC) are identified in the list of short-lived climate 

pollutants or SLCPs (CCAC, 2014).  20 

 

Air quality is a public health issue of concern in India. According to the World Health Organization (WHO), 37 cities from 

India feature in a list of 100 world cities with the highest PM10 (PM with aerodynamic diameter <10 µm) pollution globally, 

with cities like Delhi, Raipur, Gwalior, and Lucknow listed among the top 10 polluted cities (WHO, 2014). Recent studies 

addressing air quality in India (Ghude et al. 2016; Chakraborty et al. 2015), have built upon products of the Task Force on 25 

Hemispheric Transport of Air Pollutants (TF-HTAP), using HTAP emission inventories (for 2010) in a regional chemistry 

model (Ghude et al. 2016). Widespread PM2.5 and O3 pollution was found under present emission levels, which considerably 

impact human mortalities and life expectancy.  To extend the understanding of ambient air pollution to multiple (regional and 

national) scales, for multiple pollutants, methods which combine chemical transport modelling, with data from satellite 

retrievals combined with with available monitoring data, have been developed (van Donkelaar et al., 2010; Brauer et al. 2012, 30 

2016; Dey et al., 2012) and can be used to evaluate current levels and trends. The latest GBD 2015 estimates indicate that the 

population-weighted mean PM2.5 concentration for India as a whole was 74.3 µg/m3 in 2015, up from about 60 µg/m3 in 1990 
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(Cohen et al., 2017). At current levels, 99.9% of the Indian population is estimated to live in areas where the World Health 

Organization (WHO) Air Quality Guideline of 10 µg/m3 was exceeded. Nearly 90% of people lived in areas exceeding the 

WHO Interim Target 1 of 35 µg/m3.  

Strategies for mitigation of air pollution require understanding pollutant emission, differentiated by emitting sectors and by 

sub-national regions, representing both present day conditions and future evolution under different pathways of growth and 5 

technology change. Future projections of emissions, for climate relevant species, are available in the representative 

concentration pathway (RCP) scenarios (Fujino et al. 2006; Clarke et al. 2007; Van Vuuren et al. 2007; Riahi et al. 2007; 

Hijioka et al. 2008), more recently for the Shared Socioeconomic Pathways (SSPs) scenarios (Riahi et al., 2017; Rao et al., 

2017), while primary PM2.5 is included in inventories like ECLIPSE (Klimont et al., 2017, 2018). Inventories developed for 

HTAP (Janssens-Maenhout et al. 2015) address emissions of a suite of pollutants for 2008 and 2010. These scenarios and 10 

emission datasets are developed through globally consistent methodologies, leaving room for refinement through more detailed 

regional studies. Thus, in this work we develop and evaluate sectoral emission scenarios of fine particulate matter and its 

precursors and constituents from India, during 2015-2050, under specific pathways of diffusion of cleaner and more energy 

efficiency technologies. The work is broadly related to HTAP scientific questions including understanding of (i) sensitivity of 

regional PM2.5 pollution levels to magnitudes of emissions from source-sectors and (ii) changes in PM2.5 levels as a result of 15 

expected, as well as ambitious, air pollution and climate change abatement efforts.  The impacts of individual source-sectors 

on PM2.5 concentrations is assessed through simulation of spatially and temporally resolved particulate matter concentrations, 

using the GEOS-Chem chemical transport model, followed by aggregation to population-weighted concentrations at both 

national and state levels. 

 20 

Section 2 discusses the development of the emission inventory, disaggregated by sector, for the year 2015 and future 

projections to 2050; Section 3 describes the GEOS-Chem model, the simulation parameters and evaluation; Section 4 discusses 

simulated PM2.5 concentration by sector, at national and state levels under present day and future emission scenarios; and the 

last section discusses findings and conclusions. 

2. Present day and future emissions 25 

2.1. Present day emissions (2015) 

An emission inventory was developed for India, for the year 2015, based on an “engineering model approach” using 

technology-linked energy-emissions modelling adapted from previous work (Pandey and Venkataraman 2014; Pandey et al. 

2014; Sadavarte and Venkataraman, 2014), to estimate multi-pollutant emissions including those of SO2, NOx, PM2.5, black 

carbon (BC), organic carbon (OC), and non-methane volatile organic compounds (NMVOCs).   30 
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The inventory disaggregates emissions from technologies and activities, in all major sectors. Plant level data (installed 

capacity, plant load factor, and annual production) are used for 830 individual large point sources, in heavy industry and power 

generation sectors, while light industry activity statistics (energy consumption, industrial products, solvent use, etc.) are from 

sub-state (or district) level (CEA 2010; CMA 2007a,b, 2012; MoC 2007; FAI 2010; CMIE 2010; MoPNG 2012; MoWR 2007). 

Technology-linked emission factors and current levels of deployment of air pollution control technologies are used. Vehicular 5 

emissions include consideration of vehicle technologies, vehicle age distributions, and super-emitters among on-road vehicles 

(Pandey and Venkataraman, 2014). Residential sector emission estimates, based on Pandey et al. (2014), include seasonality 

in water and space heating. The “informal industries” sector includes brick production (in traditional kiln technologies like the 

Bull’s trench kilns and clamp kilns, using both coal and biomass fuels) and food and agricultural product processing operations 

(like drying and cooking operations related to sugarcane juice, milk, food-grain, jute, silk, tea, and coffee). In addition, monthly 10 

mean data on agricultural residue burning in fields, a spatio-temporally discontinuous source of significant emissions, were 

calculated using a bottom-up methodology (Pandey et al. 2014). 

 

India emissions for 2015 of PM2.5, BC, OC, SO2, NOx, and NMVOCs by sector (Figure 1) arose from three main sources: (i) 

residential biomass fuel use (for cooking and heating); (ii) coal burning in power generation and heavy industry; and (iii) open 15 

burning of agricultural residues for field clearing. Table 1 provides a description of sectors and constituent source 

categories. Emissions linked to incomplete fuel combustion, including PM2.5 (9.1 MT/yr, or million tonnes per year), BC (1.3 

MT/yr) and OC (2.3 MT/y) and NMVOCs (33.4 MT/yr), arose primarily from traditional biomass technologies in the 

residential sector (for cooking and heating), the informal industry sector (for brick production and for food and agricultural 

produce processes), as well as from agricultural reside burning. Emissions of SO2 (8.1 MT/yr) and NOx (9.5 MT/yr) arose 20 

largely from coal boilers in industry and power sectors and from vehicles in the transport sector. 

 

Detailed tabulations of 2015 emissions of each pollutant at the state level are provided in Table S1 of the supplement. 

Uncertainties in the activity rates, calculated analytically using methods described more fully in previous publications (Pandey 

and Venkataraman 2014; Pandey et al. 2014; Sadavarte and Venkataraman, 2014) are shown in Table S2 of the supplement. 25 

2.2. Future emission pathways (2015-2050) 

2.2.1. Description of future emission scenarios 

We develop and evaluate three future scenarios which extend from 2015-2050, which are likely to bound the possible amplitude 

of future emissions, based on the expected future evolution of sectoral demand, following typical methods in previous studies 

(Cofala et al., 2007; Ohara et al., 2007). These include a business-as-usual (BAU) scenario and two scenarios (S2 and S3) 30 

representing different levels of deployment of high-efficiency, low-emissions technologies (Table 2). The scenarios capture 

varying levels of emission control, with no change in current (2015) regulations, corresponding to very slow uptake of new 
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technology (BAU), adoption of promulgated and proposed regulations, corresponding to effective achievement of targets (S2), 

and adoption of ambitious regulations, corresponding to those well beyond promulgated regulations (S3). In both S2 and S3, 

despite expanding sectoral demand, there is reduced energy consumption from adoption of clean energy technologies, at 

different levels.  

 5 

The methodology for emission projection includes estimation of future evolution in (i) sectoral demand, (ii) technology mix, 

(iii) energy consumption, and (iv) technology-linked emission factors (Figure S1 of supplement). Activity levels in future years 

by source category (e.g. GWh installed capacity in power, vehicle-km travelled in transport, industrial production, e.g. in tons, 

population of users in residential), were apportioned to various technology divisions, using assumed evolving technology mix, 

for three different scenarios. Activity at the technology division level was used to derive corresponding future energy (and 10 

fuel) consumption and related emissions using technology-based emission factors. 

 

With 2015 as the base year, growth rates in sectoral demand were identified for thermal power plants, industries, residential, 

brick kilns and informal industries, on-road transportation and agricultural sectors for 2015-2030 and 2030-2050 (Table S3 of 

supplement). Sectoral growth, estimated as ratios of 2050 to 2015 demand, were 5.1, 3.8, 3.2, 1.3, 1.4 respectively, for building 15 

sector, electricity generation, heavy industries, residential sector, and agricultural residue burning, with the largest growth in 

the building and electricity generation sectors (Figure S2 of supplement).  

 

Table 2 shows regulation levels for different sectors under the three scenarios, through to 2050. The BAU and S2 scenarios 

capture both energy efficiency and emissions control, continuing under current regulation, or broadly under promulgated future 20 

policies. This assumes shifts to non-fossil generation which would occur under India Nationally Determined Contribution 

(India’s NDC, 2015) in the power sector; negligible flue gas desulphurization from a slow adoption of recent regulation 

(MoEFCC, 2015); modest increases in industrial energy efficiency under the perform achieve and trade (PAT) scheme (Level 

2, IESS, Niti Aayog, 2015 ); promulgated growth in public vehicle share (NTDPC, 2013; Guttikunda and Mohan, 2014; NITI 

Aayog, 2015) and changes in engine technology (Auto Fuel Policy Vision 2025, 2014), however, with a slow shift to BS-VI 25 

standards from barriers to availability of fuel of required standards (ICRA, 2016); modest increases in non-fired-brick walling 

materials (UNDP, 2009; Maithel, personal communication, 2016); slow shift to more efficient residential energy technologies 

and fuels (Level 2, IESS, Niti Aayog, 2015); and minor reduction in agricultural residue burning. 

 

However, in the S3 scenario, adoption of ambitious regulation, well beyond those currently promulgated is assumed. This 30 

includes very significant shifts to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; 

Level 4, IESS, Niti Aayog, 2015); near-complete shift to high efficiency industrial technologies (MoP 2012, Level 4, IESS, 

Niti Aayog, 2015); large public vehicle share (NITI Aayog, 2015), energy efficiency improvements in engine technology 

(MoP, 2015), large share of electric and CNG vehicles (NITI Aayog, 2015); complete switch to LPG/PNG or biogas or high-
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efficiency gasifier stoves for residential cooking and heating (Level 4, IESS, Niti Aayog, 2015) and to solar and electric lighting 

(National Solar Mission, 2010) by 2030; significant (by 2030) and complete (by 2050) phase-out of agricultural residue 

burning, through a switch to mulching practices (Gupta, 2014).  Further details of the shift in technologies can be found in 

Table S4 of supplement and related discussion in supplementary information (see supplement, section S2.3).  

 5 

As alluded to earlier, there is a reduction in total energy consumption in future years, despite increase in activity, in scenarios 

S2 and S3, which assume large deployment of high-efficiency energy technologies. The projected energy demand under the 

three scenarios (Figure S3, supplement section S2.4) is in general agreement with published work (Anandarajah and Gambhir 

2014; Chaturvedi and Shukla 2014; Parikh 2012; Shukla et al. 2009), of 95 EJ to 110 EJ for reference scenarios (Parikh, 2012; 

Shukla and Chaturvedi 2012) and 45-55 EJ for low carbon pathways (Anandarajah and Gambhir 2014; Chaturvedi and Shukla 10 

2014) in 2050. Projections of CO2 emissions to 2050, of 7200 MT yr-1 in S1 and 2000 MT yr-1 in S3, are broadly consistent 

with published 2050 values of 7200-7800 million tonnes y-1 CO2 for reference cases, and 2500-3400 million tonnes y-1 CO2 

under different low carbon scenarios (Anandarajah and Gambhir 2014; Shukla et al. 2009).  

 

Technology based emission factors, for over 75 technology/activity divisions, are described in previous publications (Pandey 15 

et al. 2014; Sadavarte and Venkataraman 2014). In addition to fuel combustion, emissions are estimated from industrial 

“process” activities predominant in industries such as those producing cement and non-ferrous metals, and refineries producing 

iron and steel (Table S7, supplement section S2.5). In fired-brick production, recently measured emission factors for this sector 

of PM2.5, BC and OC (Weyant et al.,2014) are used (Table S7 of supplement), while for gases, in the absence of measurements 

from brick kilns, those of coal stokers are used. In the transport sector, emission factors for seven categories of vehicles, across 20 

two vintage classes, were applied to a modelled on-road vehicle age distribution (Pandey and Venkataraman, 2014). For future 

emissions, recommendations from the Auto Fuel Policy 2025 (Auto Fuel Vision and Policy 2025) along with accounting of 

the measures to leapfrog directly to BS-VI for all on-road vehicle categories (MoRTH, 2016). To be consistent with our 

scenario descriptions, the BAU scenario still takes into account the BS-V standards for 2030 and 2050 while the effect of 

dynamic policy reforms is reflected in the tech-mix in S2 and S3 scenarios by assuming different levels of BS-VI. The  share 25 

of BS-VI is kept at modest levels owing to delay in availability of BS-VI compliant fuels and difficulties in making the 

technologies adaptive to Indian road conditions as well as cost-effective (ICRA, 2016), however, would not affect emission 

factors significantly (Table S7 of supplement). 

2.2.2. Estimated emission evolution (2015-2050) 

The net effect of scenario based assumptions is that under the BAU scenario, emissions are projected to increase steadily over 30 

time. Under the S2 scenario, they are also projected to increase but at a slower rate. Only under the most ambitious scenario, 

S3, are appreciable reductions in emissions of the various air pollutants expected.  
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Emissions of PM2.5 evolve from present-day levels of 9.1 MT/yr to 2050 levels of 18.5, 11.5 and 3.0 MT/yr, respectively, in 

the three scenarios (Figure 2 a, b, c). These arise from three main sources: (i) traditional biomass technologies in residential, 

brick production and informal industry, (ii) coal burning in power generation and heavy industry, and (iii) open burning of 

agricultural residues for field clearing. In Figures 1-3, emissions shown are only from agricultural burning, while those from 

forest and wildfires, taken from global products, described later, are input to the simulations. In all future scenarios, there is 5 

faster growth of industry and electricity generation than of residential energy demand; the former which contribute nearly 60–

70% of future emissions. Thus, controlling emissions of PM2.5 should come from these sectors. As is quite evident (Figure 2 

b and c), assuming large shifts to non-coal power generations in scenarios S2 (40-60%) and S3 (75-80%) in S3 contribute most 

to reductions in future emissions of PM2.5. Further reductions in emissions are obtained through shifts to cleaner technology 

and fuels in the residential sector such as use of gasifiers and LPG for cooking, electricity and solar devices for lighting and 10 

heating, and complete phase out of open burning of agricultural waste. Black carbon and co-emitted organic carbon have very 

similar sources with the largest emissions arising from traditional biomass technologies in the residential and informal industry 

sectors and from agricultural field burning. Future reductions in BC (Figure 2 d,e,f ) and OC (Figure 2 g,h,i ) emissions result 

from a number of policies addressing residential and informal industry sectors as well as agricultural practices. These includes 

actions that enable a shift to cleaner residential energy solutions and a shift away from fired-brick walling materials toward 15 

greater use of clean brick production technologies, as well as a shift away from agricultural field burning through the 

introduction of mulching practices (assumed in S3). Future increases in transport demand could lead to increased BC emissions 

from diesel-powered transport, thus providing an important decision lever in favour of the introduction of compressed natural 

gas (CNG) or non-fossil-electricity powered public transport (in S3). While diesel particle filters provide a technology for 

diesel PM and BC control, challenges remain including the supply of low-sulphur fuel and compliance with NOx emission 20 

standards. 

 

Emissions of SO2 increase in 2050 (Figure 3 d,e,f ) to 41.4-20.7  MT/yr under BAU and S2, but stabilize at 7.5  MT/yr under 

S3. Under both BAU and S2 scenarios (Figure 3 a,b,c), emission growth of SO2 is driven by growth in electricity demand and 

industrial production, while reduction is driven by a shift to non-carbon power generation (nuclear, hydro, solar, and wind) 25 

and modest adoption of flue gas desulphurization technology. In December 2015, the Indian Ministry of Environment and 

Forests issued new norms for thermal plants with emission standards for SO2 and NOx (MoEFCC, 2015). Our assumption 

here of negligible flue gas desulphurization technology follow from reported barriers to adoption of desulphurization and de-

NOx technologies (CSE, 2016). Little progress was found (CSE, 2016) in the implementation of new standards, from lack of 

technology installation/operation information, space for retrofitting and clarity on cost recovery. Transport-related SO2 30 

emissions are negligible in all scenarios. Emissions of NOx increase in 2050 (Figure 3 d,e,f ) to 31.7-18.4  MT/yr under BAU 

and S2, but stabilize at 10.5  MT/yr under S3. The emissions shares are dominated by thermal power and the transport sector, 

and grow with sectoral growth under the first two scenarios. Under future scenarios, the demand in passenger-km increases 

twice that in ton-km of freight, thus leading in 2050 to significantly greater passenger (7000-10000 billion passenger-km, in 
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different scenarios), than freight (2300-2800 billion ton-km) transport provided by diesel. This makes shifts away from diesel 

based public transport important. Thus, under the S3 scenario, shifts in the transport sector to tighter emission standards for 

vehicles and a greater share of CNG in public transport, as well as, in the power sector, to non-fossil power generation, reduce 

NOx emissions. Owing to the large shift away from fossil-power, the use of selective catalytic reduction (SCR) technology for 

NOx control is not considered. A non-negligible, approximately 20%, share is from residential, agricultural field burning and 5 

brick production sectors, which is reduced in magnitude by the adoption of mitigation based largely on cleaner combustion 

technologies. Emissions of NMVOCs increase in 2050 to 16.3 MT/yr under the BAU scenario, but decrease to about 3.8 MT/yr 

under S3 (Figure 3 g,h,i). In the S3 scenario, mitigation in residential, transport and open burning emissions offsets more than 

two-thirds of present-day NMVOC emissions. Industrial emissions of NMVOC, arising primarily from solvent use, are almost 

constant at 2 MT/yr across scenarios, providing further potential for mitigation. However, a shift to public transport based on 10 

heavy-duty CNG vehicles drives the increase in NMVOC emissions from the transport sector, from their significantly larger 

emissions factors, compared to those of heavy duty diesel. Therefore, alternate modes and technologies in the transport sector 

need further attention.  

 

Anthropogenic dust (Philip et al. 2017), defined here as mineral constituents of pollution particles, including coal fly-ash and 15 

mineral matter in trash burning and biomass burning emissions, contributes about 30% of Indian PM2.5 emissions in the base 

year 2015 i.e. about ~3 MT/yr. In future scenarios BAU and S2, respectively, anthropogenic dust contributes 6.0 and 4.6 MT/yr 

in 2030 and 12.0 and 6.8 MT/yr in 2050, arising primarily (60–85%) from coal fly-ash, with the balance from fugitive on-road 

dust and waste burning. In the highest-control S3 scenario, anthropogenic dust emissions were reduced to about 1.8 MT/yr, in 

both 2030 and 2050. This results from the assumed significant shift to 80–85% non-coal thermal power generation, leading to 20 

large reductions in coal fly-ash emissions. Thus, in the S3 scenario anthropogenic dust emissions arise largely from on-road 

fugitive dust and waste burning (over 50%), with a lower contribution from coal fly-ash (35-40%). 

 

Emission datasets for India in global emission inventories have been developed either through combination of regional 

inventories for specific base years (Janssens-Maenhout et al., 2015) or using integrated assessment models, e.g., the GAINS 25 

model (Amann et al., 2011), to generate scenarios of air pollutants (Klimont et al., 2009, 2017, 2018; Purohit et al., 2010; Stohl 

et al., 2015). Indian emissions for 2008 and 2010 under the HTAP framework (Janssens-Maenhout et al., 2015), originate from 

the MIX inventory (Li et al., 2017), based on earlier Asia inventories like INTEX-B (Lu et al., 2011; Lu and Streets, 2012) 

and REAS (Kurokawa et al., 2013). Inconsistencies are reported from merging datasets, calculating different pollutants using 

differing assumptions (Li et al., 2017). The datasets do not include some important regional emission sources like the open 30 

burning of agricultural residues (Janssens-Maenhout et al., 2015). Recent global emissions from ECLIPSE V5 (Stohl et al., 

2015; http://www.iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv5.html), driven by HTAP objectives to 

improve representation of aerosols emissions in IAMs (Keating, 2015), were reported to have problems over India including 

underestimation of BC and trace gas magnitudes and inaccuracies in spatial distribution (Stohl et al., 2015). The present dataset 
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overcomes some of these limitations, using consistent assumptions to calculate a number of pollutants, including all sectors in 

global inventories, as well as, agricultural residue burning emissions, industrial process emissions, while providing for finer 

spatial resolution using district level data and more relevant spatial proxies.    

 

Future emissions of particulate matter (PM2.5 and constituents, BC and OC) and precursor gases (SO2, NOx and NMVOC) 5 

estimated here were compared with the more recent sets of scenarios developed with the GAINS model in projects addressing 

global air pollution trajectories until 2050, i.e., ECLIPSE V5a (Klimont et al., 2017, 2018;) and the World Energy Outlook 

(IEA, 2016). These scenarios rely on different energy projections; Energy Technology Perspective study (IEA, 2012) was used 

in ECLIPSE V5a and World Energy Outlook 2016 in the IEA study. Furthermore, the assumptions about air pollution 

legislation vary with IEA study considering within the ‘New Policies Scenario’ recently adopted, announced or intended 10 

policies, even where implementation measures are yet to be fully defined. This is in contrast to ECLIPSE V5a where adopted 

polices by 2013 were used in the baseline scenario. In general, lower emissions in GAINS-WEO2016 (IEA, 2016) are attributed 

to the successful implementation of new emission regulations in power and transport sectors, decreased use of biomass fuel in 

residential sector and phase-out of kerosene lamps. We compare S2 and S3 scenarios in the present study to the baseline 

scenarios from the above studies (shown in Fig 2 and 3). 15 

 

For SO2 and NOx, emission trajectories in the S2 scenario are similar to those in ECLIPSE V5a, while emissions in the S3 

scenario resemble those in GAINS-WEO2016 where newly proposed SO2 and NOx regulations for thermal power plants and 

implementation of BS-VI in transportation is included. In fact, also the absolute level of emissions estimated for 2015 is 

comparable to this study (Fig 3a, d); though GAINS estimates are slightly higher for SO2 and lower for NOx owing primarily 20 

to differences in emission factors for coal power plants.  

 

For particulate matter species, the GAINS model estimates lower 2015 emissions mostly because of the differences for 

residential use of biomass as well as emissions from open burning. However, considering the uncertainties associated with 

quantification of biomass use and emission factors (e.g., Bond et al., 2004; Klimont et al., 2009, 2017; Venkataraman et al., 25 

2010) the differences are acceptable. The future evolution of emissions of BC and OC shows similar features among the studies 

with S2 comparable to ECLIPSE V5a and S3 to IEA (2016), however the S3 scenario brings much stronger reduction due to 

faster phase-out of kerosene for lighting and stronger reduction of biomass used for cooking; the latter feature is especially 

visible for emissions of OC (Fig 2d,g). For total PM2.5 (Fig. 2a) scenarios developed with the GAINS model do not show a 

very large difference and fall short of the reductions achieved in the S3 case where significant mitigation reduction is not 30 

achieved in residential sector for also in power sector and industry which in GAINS are either already controlled in the baseline 

(power sector) or continue to grow, industrial processes offsetting the benefits of reduction in other sectors. 
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Emissions of NMVOCs (Fig 3g) monotonously increase in ECLIPSE V5a, becoming higher than those in S2, by 2030, which 

however, mimic those in GAINs-WEO2016, through to 2050. While there is also a fairly large difference in estimate for the 

base year (mostly due to residential combustion of biomass, open burning, and solvent use sector), obviously the assumptions 

about the future policies are different as both ECLIPSE V5a and IEA study include more conservative assumptions about 

reduction of biomass use and eradication of open burning practices while at the same time continued growth in industrial 5 

emissions, i.e., solvent applications. Further analysis of differences between the S2 scenario and the ECLIPSE V5a and 

GAINS-WEO2016 is shown in the supplement (Fig S4).   

 

Further, the emission projections were also compared with emissions estimated in the four representative concentration 

pathways (RCP) scenarios adopted by the IPCC as a common basis for modelling future climate change (Fujino et al. 2006; 10 

Clarke et al. 2007; Van Vuuren et al. 2007; Riahi et al. 2007; Hijioka et al. 2008). The RCP scenarios were designed to 

represent a range of possible future climate outcomes in terms of radiative forcing watts per square meter (Wm-2) values (2.6, 

4.5, 6.0, and 8.5) in 2100 relative to pre-industrial levels.  Overall, Indian emissions of SO2, NOx, and BC estimated here in 

the BAU and S2 scenarios, which do not apply stringent controls, were 2 to 3 times higher than the largest emissions estimated 

in the RCP8.5 scenario in 2030 and 2050, as a result of differences in assumptions made or in the list of sources included 15 

(Table S8 of supplement). As all RCP scenarios considered principally one type of air pollution trajectory assuming that air 

pollutant emissions will be successfully reduced with economic growth. Consequently, in the longer term the range of 

outcomes is fairly similar among RCPs (Amann et al., 2013; Rao et al. 2017). Emissions of these species in the S3 scenario, 

with the most stringent controls, were in agreement with either RCP8.5 or RCP 4.5 scenario emissions. Emissions of OC in 

the BAU and S2 scenarios and of NMVOCs in the S2 and S3 scenarios were in agreement with the ranges estimated in the 20 

RCP4.5 and RCP8.5 scenarios. Emissions of SO2 estimated here for the highest-control scenario, S3, agreed with those from 

RCP 4.5 in 2030 and RCP 8.5 in 2050, due to similar assumptions of over 80% non-coal electricity generation. However, the 

S2 and BAU scenarios estimated much larger emissions. Further details are presented in section S2.6 of supplement. 

3. Model simulations and evaluation 

The emissions were used with GEOS-Chem model (www.geos-chem.org) to calculate pollutant concentration fields in space 25 

and time. The GEOS-Chem model has been previously applied to study PM2.5 over India (e.g., Boys et al. 2014; Kharol et al. 

2013; Philip et al. 2014a; Li et al. 2017) including relating satellite observations of aerosol optical depth to ground-level PM2.5 

for the GBD assessment (Brauer et al. 2012, 2016; van Donkelaar et al. 2010, 2015, 2016). The simulations undertaken in this 

work represent one of the finest resolution efforts to date to both represent India, and global scale processes. 

 30 

In addition to the emissions described in section 2.2.2, other open burning emissions were derived from the global GFED-4s 

database (Akagi et al. 2011; Andreae et al. 2001; Giglio et al. 2013; Randerson et al. 2012; van der Werf et al. 2010). In 
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addition to the species in this inventory, ammonia or NH3 emissions, important for calculating secondary particulate matter, 

were taken from the MIX emission inventory (Li et al. 2017; http://meicmodel.org/dataset-mix.html). The model solves for 

the temporal and spatial evolution of aerosols and gaseous compounds using meteorological data sets, emission inventories, 

and equations that represent the physics and chemistry of the atmosphere. Version 10.01 is used here. The simulation of PM2.5 

includes the sulphate–nitrate–ammonium–water system (Park et al. 2004), primary (Park et al. 2003) and secondary (Henze et 5 

al. 2006, 2008; Liao et al. 2007; Pye et al. 2010) carbonaceous aerosols, mineral dust (Fairlie et al. 2007), and sea salt 

(Alexander et al. 2005). The GEOS-Chem model has fully coupled ozone–NOx–hydrocarbon chemistry and aerosols including 

sulphate (SO4
2−), nitrate (NO3

−), ammonium (NH4
+) (Park et al. 2004; Pye et al. 2009), organic carbon (OC) and black carbon 

(BC) (Park et al. 2003), sea salt (Alexander et al. 2005), and mineral dust (Fairlie et al. 2007). For these simulations we also 

included the SO4
2− module introduced by Wang and colleagues (2014). Partitioning of nitric acid (HNO3) and ammonia 10 

between the gas and aerosol phases is calculated by ISORROPIA II (Fountoukis and Nenes 2007). Secondary organic aerosol 

formation includes the oxidation of isoprene (Henze and Seinfeld 2006), monoterpenes and other reactive volatile organic 

compounds (Liao et al. 2007), and aromatics (Henze et al. 2008). 

 

The South Asia nested version of GEOS-Chem used here was developed by Sreelekha Chaliyakunnel and Dylan Millet (both 15 

of the University of Minnesota) to cover the area from 55°E to 105°E and from 0°S to 40°N, and to resolve the domain of 

South Asia at a resolution of 0.5° × 0.67° (approximately 56 × 74 km at equator) with dynamic boundary conditions using 

meteorological fields from the NASA Goddard Earth Observation System (GEOS-5). The boundary fields are provided by the 

global GEOS-Chem simulation with a resolution of 4° latitude and 5° longitude (approximately 445 × 553 km at equator), 

which are updated every three hours. We have corrected the too-shallow nighttime mixing depths and overproduction of HNO3 20 

in the model following Heald and colleagues (2012) and Walker and colleagues (2012). We applied the organic massto organic 

carbon ratio in accordance with findings from Philip and colleagues (2014b). A relative humidity of 50% was used to represent 

simulated PM2.5 measurements in India. To select the year of meteorology, we conducted standard simulations using the same 

emissions and different meteorology from the years 2010 to 2012, as the meteorological fields were not yet available post-

2012. We chose the year 2012 as our meteorology year, as the simulation results using this year best represented the mean 25 

PM2.5 concentration from 2010 to 2012. A three months initialization period was used to remove the effects of initial conditions. 

To estimate the impacts of individual sources, simulations were made using total emissions from all sources, along with 

sensitivity simulations (Table 1) for major sources. Sources included in the standard simulation, however, not separately 

addressed in sensitivity simulations, termed “other” include residential lighting with traditional kerosene lamps and informal 

industry (food and agro-product processing). Primary particulate matter is largely composed of carbonaceous constituents 30 

(black carbon and organic matter) and mineral matter.  Mineral matter from combustion and industry are calculated as the 

difference between emitted PM2.5 mass and the sum of black carbon and organic matter, each calculated from respective 

emission factors and lumped along with urban fugitive dust, evaluated in a previous study (Philip et al. 2017), are termed 

anthropogenic fugitive dust or ADST. For sensitivity simulations, the total coal-related emissions, industrial coal-related 
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emissions, and emissions from other major sectors are removed respectively from the inventory in each scenario. The global 

and nested grid models of GEOS-Chem were then run in sequence using the new inventories. These sensitivity simulation 

results therefore depict the ambient PM2.5 concentrations with each emission sector shut off. The differences of the standard 

and sensitivity simulations were analyzed to produce contributions of the individual sectors to ambient PM2.5 concentrations. 

By comparing the difference in simulated ambient concentrations between the standard and sensitivity simulations, we 5 

therefore consider in our analyses the complex nonlinear relationships between emissions and ambient concentrations and the 

nonlinear atmospheric chemistry affecting particle formation. 

 

The GEOS-Chem simulations made here include those for primary aerosol emissions; secondary sulphate, nitrate, and 

ammonium; and secondary organic aerosol, going beyond previous simulations made on regional scales over India (e.g., 10 

Sadavarte et al. 2016), which were limited to secondary sulphate and a smaller list of sources in the emissions inventory, 

addressing only a few months in the year. Model predicted concentrations of PM2.5 (Figure 4) and its chemical constituents 

(Figure 5) were evaluated against available PM2.5 measurements, satellite observations of columnar aerosol optical depth 

(AOD), and available monthly chemical composition measurements (Kumar and Sunder Raman 2016; Ramachandran and 

Kedia 2010; Ramachandran and Rajesh 2007). Model performance was evaluated through normalized mean bias (NMB) (Eq. 15 

1) for pairs of model predicted concentrations (M) and corresponding observed concentrations (O), at given locations and for 

the same averaging period: 

Normalized Mean Bias = 
∑ (𝑀−𝑂)𝑛
1

∑ (𝑂)𝑛
1

             (1) 

The evaluation of the seasonal cycle of simulated PM2.5 is inhibited by the paucity of measurements. Evaluation of the PM2.5 

seasonal variation reveals an overall general consistency between the simulation and observations. However, some of the 20 

largest concentrations, e.g. at Delhi (28.6° N, 77.1° E) and Kanpur (26.4° N, 80.3° E), were somewhat underestimated. The 

model captures AOD distribution over large parts of India, compared to measurements from MODIS (Figure 4b; NMB of -

33%) but appears to have an underestimation in the northwest, implying underestimation in modelled windblown dust 

emissions in the Thar desert. However, the evaluation may be interpreted with caution, from differences arising from sensor 

(e.g. MODIS and MISR) variability in the AOD product both spatially and temporally over India (Baraskar et al., 2016), as 25 

well as, lack of coincident sampling of model with satellite observations.  

 

Evaluation was also explored against monthly mean chemical composition measurements (Figure 5) at a regional background 

site (Bhopal, 23.2o N, 77.4o E; Figure 5a, b, c; PM2.5, sulphate, nitrate; methods described in Kumar and Sunder Raman, 2016) 

and a western urban site (Ahmedabad, 23.0o N, 72.5o E; Figure 5d, BC; aethalometer measurements in Ramachandran and 30 

Rajesh, 2007). The simulation captures monthly PM2.5 and species mean concentrations satisfactorily during non-winter 

months at the two sites, but with some underestimation in the winter months. While sensitivity simulations for nitrate (not 

shown) increased nitrate concentrations in north India, they were largely unchanged in central India, evident in the 
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underestimation of nitrate (NMB = -68%) at Bhopal. The spatial distribution of particulate species (not shown) reflects the 

interplay of emission density distributions with transport processes, with sulphate showing a predominance in central India 

and to the east where there is a prevalence of thermal power generation, but BC and organic matter showing a predominance 

in northern India, where there is a prevalence of traditional biomass fuelled residential energy technologies. The findings here 

are broadly consistent with earlier work (Sadavarte et al. 2016) which showed large surface concentrations of sulphate, organic 5 

carbon and dust over north India. However, there is a strong need for coherent measurement campaigns to map concentrations 

of both PM2.5 and its chemical constituents over India, to improve model evaluation and future air quality management. 

4. Simulated PM2.5 concentrations by state and sector 

4.1. Present-day and future PM2.5 concentrations at national and state levels 

We find that ambient PM2.5 pollution is a pan-India problem with a regional character. Figure 6a-g shows the simulated total 10 

ambient PM2.5 concentrations for 2015 and in each future scenario (BAU, S2, and S3) for 2030 and 2050 to illustrate the 

different spatial patterns under each scenario. The figure displays mean PM2.5 concentration at a grid level, with area-weighted 

mean values shown in parentheses. Figure 6a shows the simulated annual mean PM2.5 concentrations in 2015. It illustrates that 

the ambient PM2.5 concentration has a clear regional distribution with high values in northern India. In most parts of India 

values exceed the Indian National Ambient Air-Quality Standard (CPCB, 2009) of 40 µg/m3 for annual mean PM2.5, with 15 

values as high as 140 µg/m3 in north India. Large regions of north, eastern and western India exhibit high PM2.5 concentrations, 

which are not just limited to specific urban centres or megacities, examined in earlier studies (Jain and Khare, 2008; Guttikunda 

et al., 2012; Sharma and Maloo, 2005).  

 

Simulations with the BAU scenario emissions (Figure 6b, c), show significant increases in annual mean PM2.5 concentrations 20 

all over India, preserving a similar elevated spatial pattern in the north and northeast regions, resulting from significant 

increases in emissions of primary PM2.5 and its precursors from their 2015 values. The BAU scenario also results in significant 

increases, over 2015 levels, in area averaged PM2.5 concentrations over India in 2030 (62.3.7%) and 2050 (105.4%) (shown in 

Fig 6a, b, c). The largest future PM2.5 concentration values approach 164.1 µg/m3 in 2030 and 323.3 µg/m3 in 2050 in the BAU 

scenario. Under the S2 scenario, simulated concentrations are projected to improve relative to BAU, following similar spatial 25 

patterns with the north and northeast regions remaining as the most polluted areas. However, there is no appreciable change in 

nationally averaged PM2.5 concentrations in 2030, while there is even a modest increase in 2050. This implies that energy-use 

and emission evolution under both current regulation (BAU) and that which is promulgated or proposed (S2), are not expected 

to yield significant improvements in future air-quality. Under the S3 scenario, a total shift away from traditional biomass 

technologies and a very large shift (80-85%) to non-fossil electricity generation (S3 scenario) controls the increase in overall 30 

PM2.5 concentrations and leads to a reduction in spatial variability within India. Under this scenario, the PM2.5 concentrations 

are found to stabilize at 2015 levels without any significant increase in 2030 and 2050 (Fig. 6a, f, g).  
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We further examine what increases or decreases in PM2.5 concentrations occur at the state level. India is organized 

administratively into 29 states and 7 union territories, therefore, evaluating state-level PM2.5 concentrations provides 

information useful at the regulatory level of state pollution control boards (Air (Prevention and Control of Pollution) Act, 

1981). At the state-level, changes in future PM2.5 concentrations, from their 2015 levels, were evaluated under the three 5 

scenarios (Figure 7a, b). Under present day emissions of 2015, populations-weighted mean concentrations in most states were 

above the national PM2.5 standard, except for Nagaland, Karnataka, Goa, Manipur, Mizoram, Kerala, Sikkim and Arunachal 

Pradesh. In 2030, under the BAU scenario, significant increases were projected in PM2.5 from 2015 levels, in Bihar, Haryana, 

Jharkhand, Odisha and Uttar Pradesh, while under the S2 scenario, increases were projected in states such as Chhattisgarh, 

Odisha, and West Bengal. This implies worsening future air quality in these locations under assumptions of current and 10 

promulgated future regulations. However, under the S3 emission scenario which includes control beyond currently 

promulgated regulations, significant decreases in PM2.5 in 2030 were projected with 20 states and six union territories reaching 

population-weighted mean concentrations below the national ambient air-quality standard, with the largest reductions in 

Andhra Pradesh, Chhattisgarh, Himachal Pradesh, Odisha. However, 10 states (including Delhi) were projected to continue to 

have population-weighted mean concentrations above the national PM2.5 standard in 2030, even under the lowest emission 15 

scenario in this study.  

 

A similar picture was seen in 2050 as well, with very significant increases under the BAU scenario in all states, leading to 

extreme PM2.5 concentrations between 100-200 µg/m3, in over ten states (including Bihar, Chhattisgarh, Delhi, Haryana, 

Jharkhand, Punjab, Uttar Pradesh, West Bengal). Under S2 scenario emissions there was either no appreciable change, or a 20 

modest increase in projected PM2.5 levels (in states including Andhra Pradesh, Chhattisgarh, Orissa, Telangana and West 

Bengal). Again, only under S3 scenario emissions, was there a significant reduction in projected future PM2.5 levels, with the 

same 20 states and six union territories falling below the national PM2.5 standard; however, the same 10 states (including Delhi) 

still continue to experience population-weighted mean concentrations higher than the standard. 

4.2. Simulated source contributions to present-day and future PM2.5 concentrations at national and state levels 25 

The simulated change in sectoral contribution to population-weighted PM2.5 concentrations, is evaluated both at national 

(Figure 8) and at the state level (Figure 9). The figures show the simulated percentage contributions to PM2.5 from residential 

biomass, anthropogenic dust, power plant coal, industry coal, open burning (agricultural), transportation, fired-brick 

production and distributed diesel sectors. It is cautioned that the sum of contributions from all subsectors does not add up to 

the simulated ambient concentration from all emission sources. This results from the nonlinearity in the relationship between 30 

emissions and ambient concentrations. Nonlinearity is related to atmospheric motion and to atmospheric reactions which are 

highly non-linear both in space and time, which lead to formation of secondary PM2.5 constituents, like sulphate, nitrate and 

organic carbon. Further, estimation of the fractional contribution from each sector is based on a difference between pairs of 
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simulations, one based on all sources and a sensitivity simulation in which that source sector is removed.  Since source-sector 

based sensitivity simulations were made only for 2015 and 2050 (but not 2030), the figures depict the contribution of the 

simulated source-sectors in 2015 and that from the three scenarios in 2050. Source contributions have to be interpreted with 

caution, since they are calculated relative to the total of all sources for a particular year and a particular scenario. 

 5 

In 2015, among source-sectors, the single largest contributor to ambient PM2.5 was residential biomass fuel use for cooking 

and heating, followed by anthropogenic dust, industrial and power plant coal burning and the open burning of agricultural 

residues. Emissions from fired-brick production, transportation and distributed diesel (diesel generator sets), also have some 

contribution to air pollution. It is noteworthy that outdoor air pollution in present day India is dominated by residential biomass 

fuel use, which is primarily known to contribute to significant burden of disease in India, via household air pollution exposures 10 

((GBD 2016 Risk Factors Collaborators, 2017)). Prior global analyses have also found evidence for the importance of 

residential biomass fuel use in India (e.g. Verma et al. 2008; 2011; Philip et al., 2014b; Lelieveld et al. 2015; Silva et al., 2016; 

Lacey et al., 2017).  The dominance of residential biomass fuel emissions is an important underlying cause for the regional 

nature of air pollution in India, because of the widely dispersed and distributed nature of this uncontrolled source. 

 15 

In 2050, future source contributions, are dominated by power plant coal and industrial coal, in both BAU and S2 scenarios, 

followed by residential biomass. In both BAU and S2 scenarios (Figures 2 and 3) expansion in electricity generation and 

industry overtakes emissions offsets, leading to 1.5-2 and 1.75-3 times emission increases, respectively, in emissions of PM2.5 

and its precursor gases, through to 2050. The future expansion projected in power plant and industrial coal use, in both these 

scenarios, exceeds the growth in biomass fuel use in the residential sector, which follows population increases. Future source 20 

contributions to emissions of PM2.5 and precursor gas emissions are about 60% from coal burning in electricity generation and 

industry, with the remainder from biomass energy use in the residential sector, which is directly reflected in source 

contributions to ambient PM2.5. The power plant coal contribution to PM2.5 increases in the BAU and S2 scenarios, however, 

it decreases in the S3 scenario, from assumptions of very high penetration (80-85%) of non-fossil electricity generation. The 

industrial coal contribution to PM2.5 concentrations increases above 2015 levels in all future scenarios, reflecting expansion in 25 

industry and related “process emissions.” This finding suggests that even more stringent measures than those assumed in the 

scenarios are needed to reduce the influence of industrial coal combustion on ambient pollution levels.  

 

Interestingly, the influence of residential biomass emissions on PM2.5 reduces in 2050, even in the BAU scenario, from the 

relative increase in that of industrial coal. In the S2 and S3 scenarios, assumptions of future shift from residential biomass to 30 

cleaner LPG/PNG and advanced low-emission gasifier stoves, leads to its decreased contribution to PM2.5 concentrations. In 

the S3 scenario, assumptions of a complete switch away from traditional residential biomass technologies, leads to this sector 

having the lowest influence on PM2.5 concentrations (less than 1.8%). The validity of such assumptions rests upon careful 

review and effective implementation of national programmes recently launched for expansion of cleaner residential fuels 
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(Pradhan Mantri Ujjwala Yojana, 2016) as well as sustainable adoption of these low emissions approaches. The influence of 

anthropogenic dust is projected to increase in BAU and S2 scenarios while decreasing observed only in the S3 scenario. On 

the other hand, the influence of total dust is projected to increase in all future scenarios, largely from decreases in the influence 

of other PM2.5 sources. Total and anthropogenic dust concentrations are projected to increase under all scenarios. Dust from 

anthropogenic activities (anthropogenic dust) is a larger contributor to total dust in BAU (47% of total dust, compared with 5 

23% in 2015) and S2 (36% of total dust), while its contributions in S3 (13%) are low. Overall, in S3, total dust (in this scenario 

dominated by windblown mineral dust) is the largest contributor to ambient PM2.5, as a result of the dramatic reductions in 

emissions projected for all of the other sectors (including anthropogenic dust) in this ambitious scenario. Further examination 

is needed of the contribution and amelioration of sources in the “other” category, not simulated separately here, which includes 

trash burning, urban fugitive dust, residential lighting with kerosene and informal industry related to food and agricultural 10 

product processing which relies on traditional technologies and biomass fuel. 

 

The PM2.5 concentration from transportation sources remains low (<2 µg/m3) under all scenarios but does not decrease in the 

ambitious scenario. The PM2.5 concentration from transportation sources remains low (<2 µg/m3) under all scenarios but does 

not decrease in the ambitious scenario. This is related both to the lower magnitude of transportation emissions, relative to other 15 

sources, as well as, possibly the relatively coarse model grid (50 km x 67 km). That the transportation contribution decreases 

in BAU but increases in S3 relative to 2015 reflects competing trends from 2015 to 2050 where emissions per vehicle generally 

decrease but with an increase in vehicle-km. Specifically, passenger-km increase about 4-fold from 2015 to 2050 but with 

reductions of 15 to 55% in primary PM2.5 emissions along with increases in transport-related SO2 (27 to 73%) and NOx (93 

to 121%) emissions, depending on the scenario. Further, emissions from transportation may be affected by reductions in 20 

emissions from other sectors and non-linear atmospheric chemistry (e.g., reductions in other combustion sources leaving more 

ammonia available to react with transportation combustion products to form secondary PM). Indeed, evaluation of simulation 

results indicates that the sensitivity of nitrate to transportation sources in scenario S2 is larger than the nitrate sensitivity in the 

BAU scenario. This suggests that increased available ammonia in S2, resulting from reductions in emissions from other sectors, 

leads to increased particulate ammonium nitrate formation associated with transportation emissions, relative to the BAU 25 

scenario. Furthermore, for a number of reasons --because we are estimating sectoral contributions to ambient PM2.5 based on 

the fractional contribution from each sector, because transportation is small relative to the other sectors and because the spatial 

pattern of the fraction of transport emissions does vary from scenario to scenario --- it is also possible that the decrease in 

BAU, followed by increases in S2 and S3, is an artefact due to increasing fractional contributions from transport relative to 

other sectors where the decreases are much more dramatic.  30 

 

Changes in source contributions to PM2.5, between 2015 and 2050, are analysed at state level (Figure 9), wherein patterns 

similar to those at the national level are seen. Residential biomass fuel use (Figure 9a) was the dominant source influencing 

PM2.5 in 2015, on both national and state scale. The trade-off between relative decreases in residential biomass, and increases 
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in industrial coal on future PM2.5, is seen in the BAU, S2 and S3 scenarios, at the state level. In Figure 9a (residential biomass) 

note the red-blue-green lines lie below the black dots, while in Figure 9c (industrial coal), they all lie above the black dots, and 

in Figure 9d (power plant coal) only red-blue lines lie above the black dots. Residential biofuel influence reduces in all 

scenarios in 2050, reaching between 1-2% at the state level, across all states. Anthropogenic dust (Figure 9b) show decreasing 

influence while total dust shows increasing influence on PM2.5 in the S3 scenario, even at the state level, for reasons discussed 5 

above. There is an increase in the influence of industrial coal (Figure 9c) on PM2.5 in all states under all three scenarios, because 

of expansion in industrial production and related “process” emissions, e.g. grinding and milling operations in cement industry, 

despite improved technology efficiencies assumed in the industrial sector. Industrial emission increases are highest in Andhra 

Pradesh, Jharkhand, Karnataka, Odisha and Tamil Nadu. Further refinement of scenarios must be made to include more 

stringent industrial emission control technologies. The power plant coal (Figure 9d) influence increases in the BAU and S2 10 

scenarios in all states, however largest increases are seen in Andhra Pradesh, Chhattisgarh, Odisha, West Bengal and 

Telangana. Under S3 scenario emissions, the power plant coal influence decreases in all states, but has the largest decreases 

in the same states as above, indicating that the emissions are influenced by high electricity generation in these states, with 

uniform assumptions made on the shift to non-fossil generation. However, future PM2.5 levels are strongly influenced by 

industrial and power plant coal use, across most states. The influence of open burning (Figure 9e) appears to change in 2050 15 

under BAU and S2 scenarios, not from absolute changes in open burning, but from changes, relative to decreases in the 

influence of other sources. However, under S3 scenario emissions, in which a complete phase out of open burning is assumed, 

there are uniform decreases in all states, leaving a negligible influence.  The influence of brick production (Figure 9f) on PM2.5 

has a negligible increase in the BAU scenario at the national level, however, it shows significant increases at the state levels, 

from 2015 to 2050, in Bihar, Himachal Pradesh, Punjab, Uttar Pradesh and Uttarakhand, the major brick producing states. 20 

While the influence of brick production decreases in almost all states under the S3 scenario, it still contributes about 2% in 

these states through to 2050. The influence of transportation (Figure 9g) increases significantly under the S3 scenario in a few 

states like Bihar, Jharkhand, Uttar Pradesh and West Bengal, a likely artefact from the spatial distribution proxy, which uses 

district level urban population to distribute on-road gasoline emissions. 

  25 

5. Conclusions 

This work represents the most comprehensive examination to date of source influence on present and future air pollution on a 

regional scale over India. Elevated annual mean PM2.5 concentrations are a pan-India problem, with a regional character, not 

limited to urban areas or megacities. Under present day emissions, simulations indicate that population-weighted mean 

concentrations in most states are above the national PM2.5 standard. Under present day (2015) emissions, residential biomass 30 

fuel use for cooking and heating is the largest single sector influencing outdoor air pollution across most of India. The 

dominance of residential biomass fuel emissions is an important underlying cause for the regional nature of air pollution in 
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India, because of the widely dispersed and distributed nature of this uncontrolled source. Agricultural residue burning is the 

next important source, especially in north-west and north India. This large influence on an annual basis, suggests even larger 

impacts during the burning periods (typically Apr-May and Oct-Dec). In eastern and peninsular India, the influence of coal 

burning in thermal power plants and industry follows that of residential biomass combustion. Anthropogenic dust (including 

coal fly-ash, mineral matter from combustion and urban fugitive dust), brick production and vehicular emissions are also 5 

important sources. Overall, the findings suggest a large regional background of PM2.5 pollution (from residential biomass, 

agricultural residue burning and power plant and industrial coal), subjacent to that from local sources (transportation, brick 

kilns, distributed diesel) in peri-urban areas and megacities.  

 

Evolution of emissions under current regulation (BAU) and promulgated or proposed regulation (S2), yields a deterioration in 10 

future air-quality future air-quality in 2030 and 2050. Only under the S3 scenario, of ambitious measures not yet formulated, 

promoting a total shift away from traditional biomass technologies and a very large shift (80-85%) to non-fossil electricity 

generation, is there an overall reduction in PM2.5 concentrations below 2015 levels, both in 2030 and 2050, with 20 states and 

six union territories projected to reach population-weighted mean concentrations below the national ambient air-quality 

standard. The present findings imply that desirable levels of air quality, may not be widespread, even under development along 15 

pathways adopted in the lowest emission scenario. Further exploration of air pollution mitigation measures must address the 

industrial sector, including process emissions, dispersed sources including trash burning and urban fugitive dust, and traditional 

technologies in residential lighting and informal industry. This study shows future emission increases in India which, if 

realized, could have important implications for air pollution and climate change on regional and hemispheric scales. 
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 5 

Table 1. Description of source categories and sensitivity simulations 

a For each sensitivity simulation, emissions from individual sectors (Nos 1-10) are removed, respectively, from the standard emissions (No 

12). Sensitivity simulation results therefore depict the ambient PM2.5 concentrations with each emission sector shut off. The differences of 

the standard and sensitivity simulations were analyzed to produce contributions of the individual sectors to ambient PM2.5 concentrations. 

The “others” sector was not separately addressed in sensitivity simulations. Meteorology was from the year 2012. 10 
bLDDVs = Light duty diesel vehicles;  cHDDVs = Heavy duty diesel vehicles; dDG= Diesel generator; eLPG = Liquefied petroleum gas 

 

  Sectors Source categories Acronym Description of sensitivity simulationsa  

1 
Power Plant 

coal 
Thermal power plants PCOL Emissions from coal burning in power plants  

2 Industrial coal Heavy and Light Industry ICOL 
Emissions from coal burning in heavy and 

light industries 
 

3 Total coal 

Thermal power plants, 

Heavy and Light industry 

(sum of 1 and 2) 

TCOL 
Emissions from coal burning in electricity 

generation, heavy and light industry 
 

4 Transportation 

Private (2,3,4 wheelers -

gasoline), Public (4 

wheelers - diesel), 

Freight (LDDVsb, 

HDDVsc) and Railways 

TRAN 
Emissions from on-road and off-road 

transport including railways 
 

5 
Distributed 

Diesel 

Agricultural Pumps, 

Tractors and DGd sets 
DSDL 

Emissions from agricultural pumps, tractors 

and diesel generator sets 

Sensitivity 

simulations 

6 
Residential 

Biomass 

Cooking, Water heating, 

and Space heating 
REBM 

Emissions from residential biomass 

combustion for cooking and heating 
 

7 
Brick 

Production 
Brick kilns BRIC Emissions from brick production  

8 Open burning 
Agricultural residue 

burning 
OBRN 

Emissions from agricultural residue burning 

and forest fires 
 

9 
Anthropogenic 

Dust 

Mineral matter from 

combustion and industry, 

urban fugitive dust 

ADST Emissions of anthropogenic dust removed.  

10 Total dust 
Windblown mineral dust 

and anthropogenic dust 
TDST 

Emissions of dust including windblown 

mineral dust and from anthropogenic 

activities removed. 

 

11 Others 

Residential lighting 

(kerosene), Cooking 

(LPGe/Kerosene), 

Informal industry, Trash 

burning and Urban 

fugitive dust 

 

No sensitivity run was carried out for source 

categories in this sector except for mineral 

matter from trash burning and urban fugitive 

dust (both accounted in ADST). 

No 

sensitivity 

simulation 

12 Standard 
Sum of sectors 1-11, 

except No 3 
STD 

Standard emissions for the year 2015 from all 

sectors. 

Standard 

simulation 
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Table 2. Description of Future Scenarios 

            

Source 

Sectors 
BAU: Reference Scenario  S2: Aspirational Scenario  S3: Ambitious Scenario 

            

Thermal 

Power 

Low influx of renewable 

energy with large dominance 
of sub-critical power plants. 

 

Share of renewable energy (40% by 

2030) as targeted in India's NDC with 

negligible flue gas desulphurization 
from a slow adoption of recent 

regulation (MoEFCC, 2015). 

 

75-80% of non-fossil power generation 

(Anandarajah and Gambhir 2014; Shukla 

and Chaturvedi 2012; Level 4, IESS, Niti 
Aayog, 2015); 80-95% use of flue gas 

desulphurization.       

Heavy and 

Light 

Industry 

Set at present-day efficiency 
levels (58-75%). 

 

Modest increases in energy efficiency 

(62-84%) under the Perform Achieve 
and Trade (PAT) scheme (Level 2, 

IESS, Niti Aayog, 2015). 

 
Near complete shift to high efficiency 

(85-100%) industrial technologies (Level 

4, IESS, Niti Aayog, 2015). 
      

Transport 
Present day share of public 
and private vehicles. 

 

Promulgated growth in public vehicle 

share (25-30%) (NTDPC, 2013; 

Guttikunda and Mohan, 2014; NITI 
Aayog, 2015) with slower shifts to 

BS-VI standards (MoRTH, 2016 

ICRA, 2016). 

 

Large shifts to public vehicles (40-60%) 

(NITI Aayog, 2015), energy efficiency 

improvements in engine technology 
(MoP, 2015) and increased share of 

electric and CNG vehicle share (20-50%) 

(NITI Aayog, 2015).       

Brick and 

Informal 
Industry 

Largely dominated by 
traditional technologies such 

as Bull’s trench kilns and 

clamp kilns. 

 

Modest increases in non-fired-brick 
walling materials (30-45%) (UNDP, 

2009; Maithel, personal 

communication, 2016). 

 

Large share of non-fired brick walling 
materials (40-70%) and shift towards use 

of gasifiers in informal industries (65-

80%).       

Residential 

Minor shift (~40%) to energy 

efficient technologies and 
fuels. 

 

Slow shift (55% in 2030 and 70% in 

2050) to energy efficient technologies 

and fuels (Level 2, IESS, Niti Aayog, 

2015). 

 

Large shifts (90% in 2030 and total in 

2050) to LPG and electricity for cooking 

and heating devices (Level 4, IESS, Niti 

Aayog, 2015), with complete shift to 

electric and solar lamps for lighting 
(National Solar Mission 2010).       

Agricultural 
No reduction in agricultural 

residue burning. 
 No reduction in agricultural residue 

burning. 
 

Slow shift (35% phase out by 2030) and 

complete phase-out (2050) of agricultural 

residue burning through a switch to 
mulching practices (Gupta, 2014). 
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Figure 1. National Emissions of Particulate matter and Precursor Gases for 2015 (Mt/yr). Emissions of NOx are in MT yr-1 of 

NO; SO2 in MT yr-1 of SO2. 5 
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Figure 2. Sectoral emission of fine (a) particulate matter, (d) black carbon and (g) organic carbon under the three scenarios, 

for 2015-2030 (column 1). Difference of higher efficiency/emission control scenarios from business-as-usual (S1 & S2) are 

shown in column 2 (b,e,h) and column 3 (c,f,i). Emissions from ECLIPSE V5a and GAINS-WEO2016 are shown for 

comparison. 5 
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Figure 3. Sectoral emission of fine (a) SO2, (d) NOx and (g) NMVOCs under the three scenarios, for 2015-2030 (column 1). 

Difference of higher efficiency/emission control scenarios from business-as-usual (S1 & S2) are shown in column 2 (b,e,h) 

and column 3 (c,f,i). Emissions from ECLIPSE V5a and GAINS-WEO2016 are shown for comparison. 
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Figure 4. Model Evaluation by (a) comparison of simulated annual mean PM2.5 concentrations with in-situ observations 5 

(circles = observations) and (b) comparison of modeled annual mean AOD over India with observations from MODIS. 
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Figure 5. Evaluation of model performance (NMB) in capturing seasonal variation in chemical species concentrations at two 

sites in India 
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Figure 6. Simulated PM2.5 concentration a) 2015 b) 2030 BAU c) 2050 BAU d) 2030 S2 e) 2050 S2 f) 2030 S3 g) 2050 S3. 

(Values in the parenthesis represent area-weighted average PM2.5 concentration for India) 
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Figure 7. Population-weighted mean ambient PM2.5 concentrations by state for (a) 2015 and 2030 (BAU, S2 and S3) and (b) 

2015 and 2050 (BAU, S2 and S3) 
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Figure 8. Percentage contribution to ambient PM2.5 attributable to different sources in 2015 and 2050 all three scenarios. 
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Figure 9. Percentage contribution of (a) Residential Biomass, (b) Anthropogenic dust, (c) Industrial coal, (d) Power plant coal, 

(e) Open burning, (f) Brick production, (g) Transportation and (h) Distributed Diesel attributable to ambient PM2.5 

concentration by state (2015 – 2050).  
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