4 research outputs found

    Les dispositifs d’évaluation des parasportifs pratiquant des sports de petits terrains en fauteuil roulant manuel

    No full text
    Le but de cette revue de littérature narrative est d’identifier à travers les logiques internes de deux disciplines collectives paralympiques en fauteuil roulant manuel (FRM), l’apport et les limites des principaux dispositifs accessibles aux parasportifs en FRM. Dans le cadre de l’optimisation des performances, les parasportifs sont habituellement testés au laboratoire et/ou sur le terrain. Au laboratoire, les ergomètres à manivelles (EM), les ergomètres à rouleaux pour fauteuil (ERF) et le tapis roulant (TR) sont les plus utilisés. Les EMs ne permettent pas de simuler la gestuelle mécanique de la propulsion du FRM. Les ERFs permettent l’utilisation du FRM personnel mais, neutralisent les forces de résistance des roulettes du FRM. Le TR est plus réaliste mais neutralise les mouvements latéraux du FRM. La technologie embarquée est une évolution des outils de laboratoire. Ainsi, les roues instrumentées (RI) et des centrales inertielles (CI) sont adaptées pour les mesures en situations de terrain. Cependant, la masse des RI limite le comportement du FRM et les CI ne quantifient pas les forces développées sur les mains courantes. La simulation des forces exercées sur les mains courantes à partir des données des CI permettra en perspective le développement de capteurs de force miniaturisés

    IMPACT DE LA VARIATION ANGULAIRE DU TRONC PENDANT UN CYCLE DE PROPULSION A L'AIDE DE CENTRALES INERTIELLES (IMU)

    No full text
    International audienceIntroductionDifferent propulsion strategies exist in wheelchair sports depending on the sport, equipment, and classificationof the athlete In athletes with high classifications, and therefore greater trunk muscles strength, have greater involvement of the trunk during a sprint, which varies with pushing velocity 1 One study showed that isometric trunk strength in a wheelchairathletes were not directly correlated with the acceleration as the latter depended on rolling resistance 2 But in this study, thethe dynamic action of the trunk was not measured during propulsion For this reason, it would be interesting to study the influence of trunk movements during propulsion in sports requiring more mobility such as wheelchair basketball. We hypothesized that the flexion/extension range of motion of the trunk (FEROMT) has an impact onthe variations in velocity during a sprint.Protocol: 13 elite female wheelchair basketball players 5 with a classification of 3.5 and above (high points) and 8 with a classification lower than 3.5 (small points) with their own sports wheelchair. The players ran 6 x 20 m sprints successively in a straight line with 20 seconds of recovery between each. IMUswere placed on the spokes of each wheel 3 and in the center of the back at the spine level, between Th 2 and Th 8 IMU measured the rotation velocity of the wheels and the trunk with integrated gyrometers.Results:-Correlation between the mean acceleration per pushing phase and FEROMT (p=0.015). No correlation between the mean deceleration per recovery phase and FEROMT (p=0.103). No correlation between the classification of athletes and FEROMT (p=0.068). However, on average high points had a greater FEROMT than small points (21.52 ± 6°and 14.7 ± 2.6°, p=0.00017) as seen in the literature.Discussion: FEROMT seems to differ according to classification however differences are not systematic Themovement of the trunk during wheelchair propulsion appears to be beneficial in order to accelerate withoutincreasing the deceleration during the recovery phase This could indicate that trunk motion is beneficial toperformance, bringing further insight to the study of Vanlandewijck et al 2011
    corecore