11 research outputs found

    Impact of community-based presumptive chloroquine treatment of fever cases on malaria morbidity and mortality in a tribal area in Orissa State, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Global Strategy for Malaria Control, one of the basic elements is early detection and prompt treatment of malaria cases, especially in areas where health care facilities are inadequate. Establishing or reviving the existing drug distribution centers (DDC) at the peripheral levels of health care can achieve this. The DDCs should be operationally feasible, acceptable by community and technical efficient, particularly in remote hard-core malaria endemic areas.</p> <p>Methods</p> <p>Volunteers from villages were selected for distribution of chloroquine and the selection was made either by villagers or head of the village. The services of the volunteers were absolutely free and voluntary in nature. Chloroquine was provided free of charge to all fever cases. The impact was evaluated based on the changes observed in fever days, fever incidence, parasite incidence and parasite prevalence (proportion of persons harbouring malaria parasite) in the community. Comparisons were made between 1st, 2nd and 3rd year of operation in the experimental villages and between the experimental and check areas.</p> <p>Results</p> <p>A total of 411 village volunteers in 378 villages in the experimental community health center with a population of 125,439 treated 88,575 fever cases with a mean annual incidence of 331.8 cases per 1,000 population during the three-year study period. The average morbid days due to fever (AFD) was reduced to 1.6 ± 0.1 from 5.9 ± 2.1 in the experimental villages while it remained at 5.0 ± 1.0 in the check villages. There was a significant reduction, (p < 0.05) in Annual Fever Incidence (AFI) in the experimental hilltop and foothill villages in comparison to check villages. The change in Annual Parasite Incidence (API) was, however, not statistically significant (p > 0.05). In plain villages that were low endemic, the reductions in AFI and API in experimental villages were statistically significant (p < 0.05). There was significant reduction in the parasite prevalence in high endemic villages of the experimental area both during 2<sup>nd </sup>and 3<sup>rd </sup>year when compared with the check area (p < 0.05) but no such reduction was observed in low endemic areas (p > 0.0.5). Mortality due to malaria declined by 75% in the experimental villages in the adult age group whereas there was an increasing trend in check villages.</p> <p>Conclusion</p> <p>The study demonstrated that a passive chloroquine distribution system operated by village volunteers in tribal areas is feasible and effective in reducing malaria-related morbidity and mortality.</p

    Application of a Household-Based Molecular Xenomonitoring Strategy to Evaluate the Lymphatic Filariasis Elimination Program in Tamil Nadu, India

    Get PDF
    Lymphatic filariasis (LF) is one of the world’s foremost debilitating infectious diseases with nearly 800 million people at risk of infection. Given that LF is a mosquito-borne disease, the use of molecular xenomonitoring (MX) to detect parasite DNA/RNA in mosquitoes can serve as a valuable tool for LF monitoring and evaluation, particularly in Culexvector areas. We investigated using MX in a low-level prevalence district of Tamil Nadu, India by applying a household-based sampling strategy to determine trap location sites. Two independent mosquito samples were collected in each of a higher human infection hotspot area (sites with community microfilaria prevalence �1%) and across a larger evaluation area that also encompassed the hotspots. Pooled results showed mostly reproducible outcomes in both settings and a significant higher pool positivity in the hotspot area. A follow-up survey conducted two years later reconfirmed these findings while also showing a reduction in pool positivity and estimated prevalence of infection in mosquitoes in both settings. The utilization of a household-based sampling strategy for MX proved effective and should be further validated in wider epidemiological settings

    Field evaluation of the biolarvicide, spinosad 20 per cent emulsifiable concentrate in comparison to its 12 per cent suspension concentrate formulation against Culex quinquefasciatus, the vector of bancroftian filariasis in India

    No full text
    Background & objectives: Biolarvicides may offer alternatives to chemical larvicides as these are known to be safe to environment and selective against the target species. However, only a limited number of biolarvicides have been approved for mosquito larval control. In the current study, a new formulation of spinosad, 20 per cent emulsifiable concentrate (EC) was tested for its efficacy against Culex quinquefasciatus, in comparison to its 12 per cent suspension concentrate (SC). Methods: Spinosad 20 per cent EC was tested against Cx. quinquefasciatus immature at 25, 50, 100 and 150 mg active ingredient (ai)/m[2] in cesspits, drains and abandoned wells in comparison with spinosad 12 per cent SC at the optimum field application dosage of 50 mg ai/m[2]. Results: The 20 per cent EC caused 90-100 per cent reduction of pupal density for 7-14 days in cesspits, 10-17 days in drains and 14-30 days in abandoned wells at all dosages tested. At lower dosages of 25 and 50 mg ai/m[2], >90 per cent reduction of pupal density was observed for one week in cesspits and street drains and for two weeks in abandoned wells. The effective duration of control provided by the higher dosages, 100 and 150 mg ai/m[2] was 1.4 to 2 times greater than the lower dosages, 25 and 50 mg ai/m[2]. Interpretation & conclusions: The findings showed that the spinosad 20 per cent EC can be used for larval control against Cx. quinquefasciatus, at the dosage of 25 mg ai/m[2] at weekly interval in cesspits and drains and at fortnightly interval in abandoned wells. Spinosad 20 per cent EC could be one of the options to be considered for larval control under integrated vector management

    Evaluation of the mosquitocidal efficacy of fluralaner, a potential candidate for drug based vector control

    No full text
    Abstract Vector control is a key intervention against mosquito borne diseases. However, conventional methods have several limitations and alternate strategies are in urgent need. Vector control with endectocides such as ivermectin is emerging as a novel strategy. The short half-life of ivermectin is a limiting factor for its application as a mass therapy tool for vector control. Isoxazoline compounds like fluralaner, a class of veterinary acaricides with long half-life hold promise as an alternative. However, information about their mosquitocidal effect is limited. We explored the efficacy of fluralaner against laboratory reared vector mosquitoes—Aedes aegypti, Anopheles stephensi, and, Culex quinquefasciatus. 24 h post-blood feeding, fluralaner showed a significant mosquitocidal effect with LC50 values in the range of 24.04–49.82 ng/mL for the three different mosquito species tested. Effects on life history characteristics (fecundity, egg hatch success, etc.) were also observed and significant effects were noted at drug concentrations of 20, 25 and 45 ng/mL for Ae. aegypti, An. stephensi, and, Cx. quinquefasciatus respectively. At higher drug concentration of 250 ng/mL, significant mortality was observed within 1–2 h of post blood feeding. Potent mosquitocidal effect coupled with its long half-life makes fluralaner an excellent candidate for drug based vector control strategies

    Molecular xenomonitoring as a post-MDA surveillance tool for global programme to eliminate lymphatic filariasis: Field validation in an evaluation unit in India.

    No full text
    BACKGROUND:Lymphatic filariasis (LF) is targeted for elimination by the year 2020. As of 2017, 67 of the 72 endemic countries have implemented annual Mass Drug Administration (MDA) for interrupting LF transmission. Transmission Assessment Survey (TAS) is the recommended protocol to evaluate the impact of MDA and to decide when to stop MDA in an Evaluation Unit (EU, population ≤2 million). As the human infection levels go down with repeated MDA rounds, it becomes a challenge to select the appropriate survey methods to assess transmission interruption. This study validates a standard protocol for molecular xenomonitoring of infection in vectors (MX) at an EU as a complementary tool for TAS to stop MDA and its utility for post-MDA or post-validation surveillance. METHODOLOGY:The study was conducted in Cuddalore district, Tamil Nadu, India, which was found eligible for TAS after 15 annual rounds of MDA (4 with DEC alone and 11 with DEC plus albendazole). The district was divided into two EUs as per the TAS protocol and one EU was randomly selected for the study. A two-stage cluster design vector sampling, developed and validated at a sub-district level, was implemented in 30 randomly selected clusters in the EU. Female Culex quinquefasciatus were collected placing gravid traps overnight (1800-0600 hrs) inside the premises of systematically selected households. Pools of 20-25 blood-fed, semi-gravid and gravid Cx. quinquefasciatus were subjected to real-time quantitative PCR (polymerase chain reaction) assay for detecting Wuchereria bancrofti DNA. Pool infection rate (% of pools positive for W. bancrofti DNA), and the estimated prevalence of W. bancrofti DNA in mosquitoes and its 95% confidence interval were calculated. Additionally, in these 30 clusters, microfilaria (Mf) survey among individuals >5 years old was carried out. School-based TAS was conducted using Immunochromatographic Card Test (ICT) in the EU. Prepared itemized cost-menu for different cost components of MX survey and TAS were estimated and compared. RESULTS:MX survey showed that only 11 (3.1%) of the 358 pools (8850 Cx.quinquefasciatus females), collected from 30 clusters, were found positive for W. bancrofti DNA. The estimated vector infection rate was 0.13% (95% CI: 0.07-0.22%), below the provisional threshold (0.25%) for transmission interruption. Of 1578 children tested in the TAS, only four (0.25%) were positive for filarial antigenemia, and it is well below the critical cut-off (18 positives) for stopping MDA. Among 9804 persons tested in the 30 clusters, only four were found positive for Mf (0.04%; 95% CI: 0.01-0.1%). The Mf-prevalence was <1% threshold for transmission interruption in humans. The estimated costs for TAS and MX per EU were 14,104USDand14,104 USD and 14,259 USD respectively. CONCLUSIONS:The result of MX protocol was in good agreement with that of TAS, providing evidence to recommend MX as a complementary tool to TAS to decide on stopping MDA. MX can also be a potential surveillance tool for post-MDA and post-validation phases as it could detect sites with residual infection and risk of resurgence of transmission. MX is economically feasible as its cost is slightly higher than that of TAS
    corecore