35 research outputs found

    Donor mesenchymal stem cells trigger chronic graft-versus-host disease following minor antigen-mismatched bone marrow transplantation

    Get PDF
    Chronic graft-versus-host disease (cGVHD) is a complication after minor antigen mismatched bone marrow transplantation (BMT) characterized by an autoimmune-type reaction in various organs. Aberration in T cell regulation is involved, with donor mesenchymal stem cells (MSCs) playing a possible role in immunomodulation. In a minor-antigen mismatched mouse BMT model, transplantation of mismatched, but not syngeneic MSCs triggered the onset of cGVHD, and was associated with fibrosis, increased IL-6 secretion, decreased Foxp3+ regulatory T cells and increased Th17 in the peripheral blood. Mismatched MSCs alone were sufficient to induce cGVHD, while removal of donor MSCs rescued mice from cGVHD. RAG2 knockout recipient mice did not suffer cGVHD, indicating that host T cells were involved. Residual host-derived T cells were significantly higher in cGVHD patients compared to non-cGVHD patients. In conclusion, donor MSCs react with residual host T cells to trigger the progression of cGVHD

    LNGFR+THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells

    Get PDF
    Human mesenchymal stem cells (hMSCs), which conventionally are isolated based on their adherence to plastic, are heterogeneous and have poor growth and differentiation, limiting our ability to investigate their intrinsic characteristics. We report an improved prospective clonal isolation technique and reveal that the combination of three cell-surface markers (LNGFR, THY-1, and VCAM-1) allows for the selection of highly enriched clonogenic cells (one out of three isolated cells). Clonal characterization of LNGFR(+)THY-1(+) cells demonstrated cellular heterogeneity among the clones. Rapidly expanding clones (RECs) exhibited robust multilineage differentiation and self-renewal potency, whereas the other clones tended to acquire cellular senescence via P16INK4a and exhibited frequent genomic errors. Furthermore, RECs exhibited unique expression of VCAM-1 and higher cellular motility compared with the other clones. The combination marker LNGFR(+)THY-1(+)VCAM-1(hi+) (LTV) can be used selectively to isolate the most potent and genetically stable MSCs

    Tumour resistance in induced pluripotent stem cells derived from naked mole-rats

    Get PDF
    The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype—ARF suppression-induced senescence (ASIS)—that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR

    Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction

    Get PDF
    Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear.Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα⁻ Sca-1⁻ osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency.Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells

    Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow

    Get PDF
    Mesenchymal stem cells (MSCs) are defined as cells that undergo sustained in vitro growth and can give rise to multiple mesenchymal lineages. Because MSCs have only been isolated from tissue in culture, the equivalent cells have not been identified in vivo and little is known about their physiological roles or even their exact tissue location. In this study, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of MSCs (PDGFRα+Sca-1+CD45−TER119−) from adult mouse bone marrow. Individual MSCs generated colonies at a high frequency and could differentiate into hematopoietic niche cells, osteoblasts, and adipocytes after in vivo transplantation. Naive MSCs resided in the perivascular region in a quiescent state. This study provides the useful method needed to identify MSCs as defined in vivo entities

    Naive-like ESRRB+ iPSCs with the Capacity for Rapid Neural Differentiation

    No full text
    Summary: Several groups have reported the existence of a form of pluripotency that resembles that of mouse embryonic stem cells (mESCs), i.e., a naive state, in human pluripotent stem cells; however, the characteristics vary between reports. The nuclear receptor ESRRB is expressed in mESCs and plays a significant role in their self-renewal, but its expression has not been observed in most naive-like human induced pluripotent stem cells (hiPSCs). In this study, we modified several methods for converting hiPSCs into a naive state through the transgenic expression of several reprogramming factors. The resulting cells express the components of the core transcriptional network of mESCs, including ESRRB, at high levels, which suggests the existence of naive-state hiPSCs that are similar to mESCs. We also demonstrate that these cells differentiate more readily into neural cells than do conventional hiPSCs. These features may be beneficial for their use in disease modeling and regenerative medicine. : Kisa et al. modified several methods for converting human induced pluripotent stem cells (hiPSCs) into a naive state, a form of pluripotency that exists in mouse embryonic stem cells (ESCs). Converted cells express components of the core transcriptional network upregulated in mouse ESCs, including ESRRB. They also show that these cells differentiate more readily into neural cells than do conventional hiPSCs. Keywords: naive pluripotency, human iPSC, reprogramming, neural differentiatio

    Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression

    No full text
    Summary: Although pluripotent stem cells can generate various types of differentiated cells, it is unclear why lineage-committed stem/progenitor cells derived from pluripotent stem cells are decelerated and why the differentiation-resistant propensity of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived cells is predominant compared with the in vivo equivalents derived from embryonic/adult tissues. In this study, we demonstrated that iPSCs reprogrammed and maintained with three chemical inhibitors of the fibroblast growth factor 4-mitogen-activated protein kinase cascade and GSK3β (3i) could be differentiated into all three germ layers more efficiently than the iPSCs reprogrammed without the 3i chemicals, even though they were maintained with 3i chemicals once they were reprogrammed. Although the iPSCs reprogrammed with 3i had increased numbers of Zscan4-positive cells, the Zscan4-positive cells among iPSCs that were reprogrammed without 3i did not have an accelerated differentiation ability. These observations suggest that 3i exposure during the reprogramming period determines the accelerated differentiation/maturation potentials of iPSCs that are stably maintained at the distinct state. : Mouse iPSCs reprogrammed and maintained with three chemical inhibitors of the FGF4-MAPK cascade and GSK3β (3i; PD184352, CHIR99021, and SU5402) could be differentiated into all three germ layers efficiently and contain increased numbers of Zscan4, a 2-cell stage marker, positive cells. Keywords: induced pluripotent stem cells (iPSCs), culture conditions, 3i, differentiation potentials, Zscan4, 2-cell gene

    Generation of D1-1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using TALEN-mediated editing of the SCN1A gene

    No full text
    Dravet syndrome (DS) is an infantile epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene encoding the α1 subunit of the voltage-gated sodium channel Nav1.1. As an in vitro model of this disease, we previously generated an induced pluripotent stem cell (iPSC) line from a patient with DS carrying a c.4933C>T (p.R1645*) substitution in SCN1A. Here, we describe developing a genome-edited control cell line from this DS iPSC line by substituting the point mutation with the wild-type residue. This artificial control iPSC line will be a powerful tool for research into the pathology of DS
    corecore