143 research outputs found

    Low-cost multipurpose sensor network integrated with iot and webgis for fire safety concerns

    Get PDF
    Fire emergencies cause severe damage to Brazilian federal universities. An appropriate and efficient tool to prevent or detect such events early is multisensory networks from the Internet of Things (IoT). In this study, we present the stages of development of a WebGIS system which integrates the IoT that allows the detection and helps manage such incidents. The approach consists of a network of multipurpose sensors that can identify different sources of fire hazards. If a potential source is registered, information about environmental conditions is transmitted in real-time to the system. Depending on the severity level, an alert is issued to WebGIS. Location is represented on a map. The entire system consists of single-board devices. Software components are based on open-source tools. The whole network only needs little power and, therefore, theoretically, could be carried out as an autonomous system powered by batteries. The entire system has been tested with flame, temperature, gas, smoke, and humidity sensors. The experiments allowed us to show its potential, formulate recommendations and indications for future studies

    Supercurrent induced domain wall motion

    Full text link
    We study the dynamics of a magnetic domain wall, inserted in, or juxtaposed to, a conventional superconductor, via the passage of a spin polarized current through a FSF junction. Solving the Landau-Lifshitz-Gilbert equation of motion for the magnetic moments we calculate the velocity of the domain wall and compare it with the case of a FNF junction. We find that in several regimes the domain wall velocity is larger when it is driven by a supercurrent.Comment: 10 pages, 8 figure

    Magnetic impurities in a superconductor: Effect of domain walls and interference

    Full text link
    We consider the effect of magnetic impurities, modeled by classical spins, in a conventional superconductor. We study their effect on the quasiparticles, specifically on the spin density and local density of states (LDOS). As previously emphasized, the impurities induce multiple scatterings of the quasiparticle wave functions leading to complex interference phenomena. Also, the impurities induce quantum phase transitions in the many-body system. Previous authors studied the effect of either a small number of impurities (from one to three) or a finite concentration of impurities, typically in a disordered distribution. In this work we assume a regular set of spins distributed inside the superconductor in such a way that the spins are oriented, forming different types of domain walls, assumed stable. This situation may be particularly interesting in the context of spin transfer due to polarized currents traversing the material.Comment: 26 pages, 26 figures (72 in total

    Interplay of disorder and magnetic field in the superconducting vortex state

    Full text link
    We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the positions of vortices are distributed completely at random. We consider both the cases of s-wave and d-wave pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices enhances the low energy density of states. In the s-wave case the gap is filled and the density of states is a power law at low energies. In the d-wave case the density of states is finite at zero energy and it rises linearly at very low energies in the Dirac isotropic case (\alpha_D=t/\Delta_0=1, where t is the hopping integral and \Delta_0 is the amplitude of the order parameter). For slightly higher energies the density of states crosses over to a quadratic behavior. As the Dirac anisotropy increases (as \Delta_0 decreases with respect to the hopping term) the linear region decreases in width. Neglecting this small region the density of states interpolates between quadratic and back to linear as \alpha_D increases. The low energy states are strongly peaked near the vortex cores.Comment: 12 REVTeX pages, 15 figure

    Dephasing in Metals by Two-Level Systems in the 2-Channel-Kondo Regime

    Full text link
    We point out a novel, non-universal contribution to the dephasing rate 1/\tau_\phi \equiv \gamma_\phi of conduction electrons in metallic systems: scattering off non-magnetic two-level systems (TLSs) having almost degenerate Kondo ground states. In the regime \Delta_{ren} < T < T_K (\Delta_{ren} = renormalized level splitting, T_K = Kondo temperature), such TLSs exhibit non-Fermi-liquid physics that can cause \gamma_\phi, which generally decreases with decreasing T, to seemingly saturate in a limited temperature range before vanishing for T \to 0. This could explain the saturation of dephasing recently observed in gold wires [Mohanty et al. Phys. Rev. Lett. 78, 3366 (1997)].Comment: Final published version, including minor improvements suggested by referees. 4 pages, Revtex, 1 figur

    Kondo Effect in Systems with Spin Disorder

    Full text link
    We consider the role of static disorder in the spin sector of the one- and two-channel Kondo models. The distribution functions of the disorder-induced effective energy splitting between the two levels of the Kondo impurity are derived to the lowest order in the concentration of static scatterers. It is demonstrated that the distribution functions are strongly asymmetric, with the typical splitting being parametrically smaller than the average rms value. We employ the derived distribution function of splittings to study the temperature dependence of the low-temperature conductance of a sample containing an ensemble of two-channel Kondo impurities. The results are used to analyze the consistency of the two-channel Kondo interpretation of the zero-bias anomalies observed in Cu/(Si:N)/Cu nanoconstrictions.Comment: 16 pages, 5 figures, REVTe

    Spin dynamics of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy

    Full text link
    We use exact diagonalization and the modified Lanczos method to study the finite energy and finite momentum spectral weight of the longitudinal and transverse spin excitations of the anisotropic zig-zag ladder. We find that the spin excitations form continua of gapless or gapped spinons in the different regions of the phase diagram. The results obtained are consistent with a picture previously proposed that in the anisotropic case there is a transition from a gapped regime to a gapless regime, for small interchain coupling. In this regime we find a sharp low-energy peak in the structure function for the transverse spin excitations, consistent with a finite stiffness.Comment: 17 figure

    Mixed-valent regime of the two-channel Anderson impurity as a model for UBe_13

    Full text link
    We investigate the mixed-valent regime of a two-configuration Anderson impurity model for uranium ions, with separate quadrupolar and magnetic doublets. With a new Monte Carlo approach and the non-crossing approximation we find: (i) A non-Fermi-liquid fixed point with two-channel Kondo model critical behavior; (ii) Distinct energy scales for screening the low-lying and excited doublets; (iii) A semi-quantitative explanation of magnetic-susceptibility data for U1x_{1-x}Thx_xBe13_{13} assuming 60-70% quadrupolar doublet ground-state weight, supporting the quadrupolar-Kondo interpretation.Comment: 4 Pages, 3 eps figures; submitted to Phys. Rev. Let

    Gapless spectrum in a class of S=1 exchange models with long-range interactions

    Full text link
    We present evidence for the absence of a gap in a class of S=1 antiferromagnetic exchange models. The spin exchange is long-ranged of the type (1)ij/ijα-(-1)^{i-j}/|i-j|^{\alpha} where 1<α<31<\alpha<3. We have shown previously that without the alternating factor the model for α=2\alpha=2 (S=1 Haldane-Shastry model) has a gap, exponentially decaying correlation functions and exponentially small susceptibility at very low temperatures. In the case of the alternated interaction the stabilizing next nearest neighbor ferromagnetic interaction changes qualitatively the behavior of the system. We have studied the groundstate and first excited state using a modified Lanczos algorithm for system sizes up to 16 sites. Also, we performed exact diagonalization for systems up to 8 sites and obtained the thermodynamics. The correlation functions decay with distance like a power law. These models define a new class of integer spin chains that do not show a Haldane gap. The results may be relevant to describe impurity spins coupled by a RKKY-interaction through a half-filled conduction-electron band.Comment: 19 pages, 13 figures, RevTex, improved version, to appear in Journal of Physics: Condensed Matte

    Non-Fermi Liquid Behavior in Dilute Quadrupolar System Prx_{x}La1x_{1-x}Pb3_3 with xx\le0.05

    Full text link
    We have studied the low-temperature properties of Prx_{x}La1x_{1-x}Pb3_{3} with non-Kramers Γ3\Gamma_{3} quadrupolar moments of the crystal-electric-field ground state, for a wide concentration range of Pr ions. For xx\le0.05, the specific heat C/TC/T increases monotonically below TT=1.5 K, which can be scaled with a characteristic temperature TT^{*} defined at each concentration xx. The electrical resistivity ρ\rho(T)(T) in the corresponding temperature region shows a marked decrease deviating from a Fermi-liquid behavior ρ\rho(T)(T)\proptoT2T^{2}. The Kondo effect arising from the correlation between the dilute Γ3\Gamma_{3} moments and the conduction electrons may give rise to such anomalous behavior
    corecore