5 research outputs found

    A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    Get PDF
    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level

    Roux-en-Y Gastric-Bypass and sleeve gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen

    No full text
    International audienceSome shifts in the gut microbiota composition and its metabolic fingerprints have been associated to Sleeve gastrectomy (SG) and Roux-en-Y Gastric Bypass (RYGB). So far, plasma bile acids have been associated with post-operative glucose improvement and weight loss, but nothing is known about their metabolism in the gut lumen. As bile acids are physiologically transformed by the microbiota into various species, the aim of this work was to study how SG and RYGB-associated dysbiosis impact the bioconversion of bile acids in the intestinal lumen. Comparing SHAM (n = 9) with our validated rat models of SG (n = 5) and RYGB (n = 6), we quantified luminal bile acids along the gut and found that the metabolic transformation of bile acids (deconjugation, dehydroxylation, and epimerization) is not different from the duodenum to the colon. However, in the cecum where the biotransformation mainly takes place, we observed deep alterations of the microbiota composition, which were specific of each type of surgery. In conclusion, despite specific dysbiosis after surgery, the bile acids metabolism in the gut lumen is highly preserved, suggesting that a resilience of the gut microbiota occurs after these procedures

    Biotransformation of Bile Acids, Cholesterol, and Steroid Hormones

    No full text
    corecore